
NeXus: a common data format for
neutron, x-ray, and muon science

Release 3.1

http://nexusformat.org

2014-10-05 17:22:20 CDT

CONTENTS

1 NeXus: User Manual 3
1.1 NeXus Introduction . 3
1.2 NeXus Design . 16
1.3 Constructing NeXus Files and Application Definitions . 43
1.4 Strategies for storing information in NeXus data files . 54
1.5 Verification and validation of files . 55
1.6 Frequently Asked Questions . 59

2 Examples of writing and reading NeXus data files 63
2.1 Code Examples that use the NAPI . 63
2.2 Code Examples that do not use the NAPI . 69

3 NeXus: Reference Documentation 105
3.1 Introduction to NeXus definitions . 105
3.2 NXDL: The NeXus Definition Language . 107
3.3 Base Class Definitions . 127
3.4 Application Definitions . 192
3.5 Contributed Definitions . 232

4 NAPI: NeXus Application Programmer Interface (frozen) 273
4.1 Status . 273
4.2 Overview . 273
4.3 Core API . 274
4.4 Utility API . 280
4.5 Building Programs . 281
4.6 Reporting Bugs in the NeXus API . 282

5 NeXus Community 283
5.1 NeXus Wiki . 283
5.2 Contributed Definitions . 283
5.3 Other Ways NeXus Coordinates with the Scientific Community . 283

6 Installation 287
6.1 Precompiled Binary Installation . 287
6.2 Source Installation . 288

7 NeXus Utilities 291
7.1 Utilities supplied with NeXus . 291
7.2 Data Analysis . 292
7.3 HDF Tools . 293

i

8 Brief history of NeXus 295

9 About these docs 297
9.1 Authors . 297
9.2 Colophon . 297
9.3 Revision History . 297
9.4 Copyright and Licenses . 298

Index 299

ii

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

http://www.nexusformat.org/

CONTENTS 1

http://www.nexusformat.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

2 CONTENTS

CHAPTER

ONE

NEXUS: USER MANUAL

1.1 NeXus Introduction

NeXus is an effort by an international group of scientists to define a common data exchange format for neutron, X-ray,
and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for
organizing data within HDF5 files in addition to a dictionary of well-defined domain-specific field names. The NeXus
data format has two purposes. First, NeXus defines a format that can serve as a container for all relevant data associated
with a scientific instrument or beamline. This is a very important use case. Second, NeXus defines standards in the
form of application definitions for the exchange of data between applications. NeXus provides structures for raw
experimental data as well as for processed data.

In recent years, a community of scientists and computer programmers working in neutron and synchrotron facilities
around the world came to the conclusion that a common data format would fulfill a valuable function in the scattering
community. As instrumentation becomes more complex and data visualization becomes more challenging, individual
scientists, or even institutions, find it difficult to keep up with new developments. A common data format makes it
easier, both to exchange experimental results and to exchange ideas about how to analyze them. It promotes greater
cooperation in software development and stimulates the design of more sophisticated visualization tools. Additional
background information is given in the chapter titled Brief history of NeXus.

This section is designed to give a brief introduction to NeXus, the data format and tools that have been developed in
response to these needs. It explains what a modern data format such as NeXus is and how to write simple programs to
read and write NeXus files.

The programmers who produce intermediate files for storing analyzed data should agree on simple interchange rules.

1.1.1 What is NeXus?

The NeXus data format has four components:

A set of design principles to help people understand what is in the data files.

A set of data storage objects (Base Class Definitions and Application Definitions) to allow the development of
portable analysis software.

3

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

A set of subroutines Utilities and examples to make it easy to read and write NeXus data files.

A Scientific Community to provide the scientific data, advice, and continued involvement with the NeXus standard.
NeXus provides a forum for the scientific community to exchange ideas in data storage.

In addition, NeXus relies on a set of low-level file formats to actually store NeXus files on physical media. Each of
these components are described in more detail in the Physical File format section.

The NeXus Application-Programmer Interface (NAPI), which provides the set of subroutines for reading and writing
NeXus data files, is described briefly in NAPI: The NeXus Application Programming Interface. (Further details are
provided in the NAPI chapter.)

The principles guiding the design and implementation of the NeXus standard are described in the NeXus Design
chapter.

Base classes, which comprise the data storage objects used in NeXus data files, are detailed in the Base Class Defini-
tions chapter.

Additionally, a brief list describing the set of NeXus Utilities available to browse, validate, translate, and visualise
NeXus data files is provided in the NeXus Utilities chapter.

A Set of Design Principles

NeXus data files contain four types of entity: data groups, data fields, attributes, and links.

Data Groups Data groups are like folders that can contain a number of fields and/or other groups.

Data Fields Data fields can be scalar values or multidimensional arrays of a variety of sizes (1-byte, 2-byte, 4-byte,
8-byte) and types (characters, integers, floats). In HDF, fields are represented as HDF Scientific Data Sets (also
known as SDS).

Data Attributes Extra information required to describe a particular group or field, such as the data units, can be stored
as a data attribute.

Links Links are used to reference the plottable data from NXdata when the data is provided in other groups such as
NXmonitor or NXdetector.

In fact, a NeXus file can be viewed as a computer file system. Just as files are stored in folders (or subdirectories) to
make them easy to locate, so NeXus fields are stored in groups. The group hierarchy is designed to make it easy to
navigate a NeXus file.

Example of a NeXus File

The following diagram shows an example of a NeXus data file represented as a tree structure.

4 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Example of a NeXus Data File

Note that each field is identified by a name, such as counts, but each group is identified both by a name and, after a
colon as a delimiter, the class type, e.g., monitor:NXmonitor). The class types, which all begin with NX, define
the sort of fields that the group should contain, in this case, counts from a beamline monitor. The hierarchical design,
with data items nested in groups, makes it easy to identify information if you are browsing through a file.

Important Classes

Here are some of the important classes found in nearly all NeXus files. A complete list can be found in the NeXus
Design chapter.

Note: NXentry and NXdata are the only two classes necessary to store the minimum amount of information in a
valid NeXus data file.

NXentry Required: The top level of any NeXus file contains one or more groups with the class NXentry. These
contain all the data that is required to describe an experimental run or scan. Each NXentry typically
contains a number of groups describing sample information (class NXsample), instrument details (class
NXinstrument), and monitor counts (class NXmonitor).

NXdata Required: Each NXentry group contains one or more groups with class NXdata. These groups contain
the experimental results in a self-contained way, i.e., it should be possible to generate a sensible plot of the data
from the information contained in each NXdata group. That means it should contain the axis labels and titles
as well as the data.

NXsample A NXentry group will often contain a group with class NXsample. This group contains information
pertaining to the sample, such as its chemical composition, mass, and environment variables (temperature,
pressure, magnetic field, etc.).

NXinstrument There might also be a group with class NXinstrument. This is designed to encapsulate all the
instrumental information that might be relevant to a measurement, such as flight paths, collimation, chopper
frequencies, etc.

1.1. NeXus Introduction 5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXinstrument excerpt

Since an instrument can include several beamline components each defined by several parameters,
the components are each specified by a separate group. This hides the complexity from generic file
browsers, but makes the information available in an intuitively obvious way if it is required.

Simple Example

NeXus data files do not need to be complicated. In fact, the following diagram shows an extremely simple NeXus file
(in fact, the simple example shows the minimum information necessary for a NeXus data file) that could be used to
transfer data between programs. (Later in this section, we show how to write and read this simple example.)

Example structure of a simple data file

This illustrates the fact that the structure of NeXus files is extremely flexible. It can accommodate very complex
instrumental information, if required, but it can also be used to store very simple data sets. Here is the structure of a
very simple NeXus data file (examples/verysimple.nx5):

Structure of a very simple NeXus Data file

1 verysimple.nx5 : NeXus data file
2 @file_name = verysimple.nx5

3 @file_time = 2014-09-08T09:07:11.939912

4 @NeXus_version = 4.3.0

6 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5 @HDF5_Version = 1.8.9

6 @h5py_version = 2.3.0
7 entry:NXentry
8 @NX_class = NXentry
9 data:NXdata

10 @NX_class = NXdata

11 counts:NX_INT64[15] = [1193, 4474, 53220, ’...’, 1000]

12 @long_name = photodiode counts

13 @signal = 1

14 @axes = two_theta

15 two_theta:NX_FLOAT64[15] = [18.909400000000002, 18.909600000000001, 18.909800000000001, ’...’, 18.912199999999999]

16 @units = degrees

17 @long_name = two_theta (degrees)

NeXus files are easy to create. This example NeXus file was created using a short Python program and NeXpy:

Using NeXpy to write a very simple NeXus HDF5 Data file

1 #!/usr/bin/env python
2 # This example uses NeXpy to build the verysimple.nx5 data file.
3

4 from nexpy.api import nexus
5

6 angle = [18.9094, 18.9096, 18.9098, 18.91, 18.9102,
7 18.9104, 18.9106, 18.9108, 18.911, 18.9112,
8 18.9114, 18.9116, 18.9118, 18.912, 18.9122]
9 diode = [1193, 4474, 53220, 274310, 515430, 827880,

10 1227100, 1434640, 1330280, 1037070, 598720,
11 316460, 56677, 1000, 1000]
12

13 two_theta = nexus.SDS(angle, name="two_theta",
14 units="degrees",
15 long_name="two_theta (degrees)")
16 counts = nexus.SDS(diode, name="counts", long_name="photodiode counts")
17 data = nexus.NXdata(counts,[two_theta])
18 data.save("verysimple.nx5")

A Set of Data Storage Objects

If the design principles are followed, it will be easy for anyone browsing a NeXus file to understand what it contains,
without any prior information. However, if you are writing specialized visualization or analysis software, you will
need to know precisely what specific information is contained in advance. For that reason, NeXus provides a way of
defining the format for particular instrument types, such as time-of-flight small angle neutron scattering. This requires
some agreement by the relevant communities, but enables the development of much more portable software.

The set of data storage objects is divided into three parts: base classes, application definitions, and contributed defini-
tions. The base classes represent a set of components that define the dictionary of all possible terms to be used with
that component. The application definitions specify the minimum required information to satisfy a particular scientific
or data analysis software interest. The contributed definitions have been submitted by the scientific community for
incubation before they are adopted by the NIAC or for availability to the community.

1.1. NeXus Introduction 7

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

These instrument definitions are formalized as XML files, using NXDL, (as described in the NXDL chapter) to specify
the names of data fields, and other NeXus data objects. The following is an example of such a file for the simple
NeXus file shown above.

A very simple NeXus Definition Language (NXDL) file

1 <?xml version="1.0" ?>
2 <definition
3 xmlns="http://definition.nexusformat.org/nxdl/3.1"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/3.1 ../nxdl.xsd"
6 category="base"
7 name="verysimple"
8 version="1.0"
9 type="group" extends="NXobject">

10

11 <doc>
12 A very simple NeXus NXDL file
13 </doc>
14 <group type="NXentry">
15 <group type="NXdata">
16 <field name="counts" type="NX_INT" units="NX_UNITLESS">
17 <doc>counts recorded by detector</doc>
18 </field>
19 <field name="two_theta" type="NX_FLOAT" units="NX_ANGLE">
20 <doc>rotation angle of detector arm</doc>
21 </field>
22 </group>
23 </group>
24 </definition>

Complete examples of reading and writing NeXus data files are provided later. This chapter has several examples of
writing and reading NeXus data files. If you want to define the format of a particular type of NeXus file for your own
use, e.g. as the standard output from a program, you are encouraged to publish the format using this XML format. An
example of how to do this is shown in the Creating a NXDL Specification section.

A Set of Subroutines

NeXus data files are high-level so the user only needs to know how the data are referenced in the file but does not need
to be concerned where the data are stored in the file. Thus, the data are most easily accessed using a subroutine library
tuned to the specifics of the data format.

In the past, a data format was defined by a document describing the precise location of every item in the data file,
either as row and column numbers in an ASCII file, or as record and byte numbers in a binary file. It is the job of the
subroutine library to retrieve the data. This subroutine library is commonly called an application-programmer interface
or API.

For example, in NeXus, a program to read in the wavelength of an experiment would contain lines similar to the
following:

8 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Simple example of reading data using the NeXus API

1 NXopendata (fileID, "wavelength");
2 NXgetdata (fileID, lambda);
3 NXclosedata (fileID);

In this example, the program requests the value of the data that has the label wavelength, storing the result in the
variable lambda. fileID is a file identifier that is provided by NeXus when the file is opened.

We shall provide a more complete example when we have discussed the contents of the NeXus files.

Scientific Community

NeXus began as a group of scientists with the goal of defining a common data storage format to exchange experimental
results and to exchange ideas about how to analyze them.

The NeXus Community provides the scientific data, advice, and continued involvement with the NeXus standard.
NeXus provides a forum for the scientific community to exchange ideas in data storage through the NeXus wiki.

The NeXus International Advisory Committee (NIAC) supervises the development and maintenance of the NeXus
common data format for neutron, X-ray, and muon science. The NIAC supervises a technical committee to oversee
the NAPI: NeXus Application Programmer Interface (frozen) and the Introduction to NeXus definitions.

Representation of data examples

Most of the examples of data files have been written in a format intended to show the structure of the file rather than
the data content. In some cases, where it is useful, some of the data is shown. Consider this prototype example:

example of NeXus data file structure

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data:[]
5 @axes = "bins"

6 @long_name = "strip detector 1-D array"

7 @signal = 1
8 bins:[0, 1, 2, ... 1023]
9 @long_name = "bin index numbers"

10 sample:NXsample
11 name = "zeolite"
12 data:NXdata
13 data --> /entry/instrument/detector/data
14 bins --> /entry/instrument/detector/bins

Some words on the notation:

• Hierarchy is represented by indentation. Objects on the same indentation level are in the same group

• The combination name:NXclass denotes a NeXus group with name name and class NXclass.

• A simple name (no following class) denotes a data field. An equal sign is used to show the value, where this is
important to the example.

1.1. NeXus Introduction 9

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• Sometimes, a data type is specified and possibly a set of dimensions. For example,
energy:NX_NUMBER[NE] says energy is a 1-D array of numbers (either integer or floating point) of
length NE.

• Attributes are noted as @name=”value” pairs. The @ symbol only indicates this is an attribute and is not part of
the attribute name.

• Links are shown with a text arrow --> indicating the source of the link (using HDF5 notation listing the
sequence of names).

Line 1 shows that there is one group at the root level of the file named entry. This group is of type NXentry which
means it conforms to the specification of the NXentry NeXus base class. Using the HDF5 nomenclature, we would
refer to this as the /entry group.

Lines 2, 10, and 12: The /entry group contains three subgroups: instrument, sample, and data. These
groups are of type NXinstrument, NXsample, and NXdata, respectively.

Line 4: The data of this example is stored in the /entry/instrument/detector group in the dataset called
data (HDF5 path is /entry/instrument/detector/data). The indication of data:\[] says that data
is an array of unspecified dimension(s).

Lines 5-7: There are three attributes of /entry/instrument/detector/data: axes, long_name, and
signal.

Line 8 (reading bins:\[0, 1, 2, ... 1023]) shows that bins is a 1-D array of length presumably 1024.
A small, representative selection of values are shown.

Line 9: an attribute that shows a descriptive name of /entry/instrument/detector/bins. This attribute
might be used by a NeXus client while plotting the data.

Line 11 (reading name = "zeolite") shows how a string value is represented.

Lines 13-14: The /entry/data) group has two datasets that are actually linked as shown. (As you will see later,
the NXdata group is required and enables NeXus clients to easily determine what to offer for display on a default
plot.)

Class path specification

In some places in this documentation, a path may be shown using the class types rather than names. For example:

/NXentry/NXinstrument/NXcrystal/wavelength

identifies a dataset called wavelength that is inside a group of type NXcrystal ...

As it turns out, this syntax is the syntax used in NXDL link specifications. This syntax is also used when the exact
name of each group is either unimportant or not specified.

If default names are taken for each class, then the above class path is expressed as this equivalent HDF5 path:

/entry/instrument/crystal/wavelength

In some places in this documentation, where clarity is needed to specify both the path and class name, you may find
this equivalent path:

/entry:NXentry/instrument:NXinstrument/crystal:NXcrystal/wavelength

Motivations for the NeXus standard in the Scientific Community

By the early 1990s, several groups of scientists in the fields of neutron and X-ray science had recognized a common and
troublesome pattern in the data acquired at various scientific instruments and user facilities. Each of these instruments

10 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

and facilities had a locally defined format for recording experimental data. With lots of different formats, much of
the scientists’ time was being wasted in the task of writing import readers for processing and analysis programs.
As is common, the exact information to be documented from each instrument in a data file evolves, such as the
implementation of new high-throughput detectors. Many of these formats lacked the generality to extend to the new
data to be stored, thus another new format was devised. In such environments, the documentation of each generation
of data format is often lacking.

Three parallel developments have led to NeXus:

1. June 1994: Mark Könnecke (Paul Scherer Institute, Switzerland) made a proposal using netCDF for the Euro-
pean neutron scattering community while working at the ISIS pulsed neutron facility.

2. August 1994: Jon Tischler and Mitch Nelson (Oak Ridge National Laboratory, USA) proposed an HDF-based
format as a standard for data storage at the Advanced Photon Source (Argonne National Laboratory, USA).

3. October 1996: Przemek Klosowski (National Institute of Standards and Technology, USA) produced a first draft
of the NeXus proposal drawing on ideas from both sources.

These scientists proposed methods to store data using a self-describing, extensible format that was already in broad use
in other scientific disciplines. Their proposals formed the basis for the current design of the NeXus standard which was
developed across three workshops organized by Ray Osborn (ANL), SoftNeSS‘94 (Argonne Oct. 1994), SoftNeSS‘95
(NIST Sept. 1995), and SoftNeSS‘96 (Argonne Oct. 1996), attended by representatives of a range of neutron and
X-ray facilities. The NeXus API was released in late 1997. Basic motivations for this standard were:

1. Simple plotting

2. Unified format for reduction and analysis

3. Defined dictionary of terms

Simple plotting An important motivation for the design of NeXus was to simplify the creation of a default plot view.
While the best representation of a set of observations will vary, depending on various conditions, a good suggestion is
often known a priori. This suggestion is described in the NXdata element so that any program that is used to browse
NeXus data files can provide a best representation without request for user input.

Unified format for reduction and analysis Another important motivation for NeXus, indeed the raison d’etre, was
the community need to analyze data from different user facilities. A single data format that is in use at a variety of
facilities would provide a major benefit to the scientific community. This should be capable of describing any type of
data from the scientific experiments, at any step of the process from data acquisition to data reduction and analysis.
This unified format also needs to allow data to be written to storage as efficiently as possible to enable use with
high-speed data acquisition.

Self-description, combined with a reliance on a multi-platform (and thereby portable) data storage format, are valued
components of a data storage format where the longevity of the data is expected to be longer than the lifetime of the
facility at which it is acquired. As the name implies, self-description within data files is the practice where the structure
of the information contained within the file is evident from the file itself. A multi-platform data storage format must
faithfully represent the data identically on a variety of computer systems, regardless of the bit order or byte order or
word size native to the computer.

The scientific community continues to grow the various types of data to be expressed in data files. This practice is
expected to continue as part of the investigative process. To gain broad acceptance in the scientific user community,
any data storage format proposed as a standard would need to be extendable and continue to provide a means to express
the latest notions of scientific data.

The maintenance cost of common data structures meeting the motivations above (self-describing, portable, and ex-
tendable) is not insurmountable but is often well-beyond the research funding of individual members of the muon,
neutron, and X-ray science communities. Since it is these members that drive the selection of a data storage format, it
is necessary for the user cost to be as minimal as possible. In this case, experience has shown that the format must be

1.1. NeXus Introduction 11

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

in the public-domain for it to be commonly accepted as a standard. A benefit of the public-domain aspect is that the
source code for the API is open and accessible, a point which has received notable comment in the scientific literature.

More recently, NeXus has recognized that part of the scientific community with a desire to write and record scientific
data, has small data volumes and a large aversion to the requirement of a complicated API necessary to access data
in binary files such as HDF. For such information, the NeXus API (NAPI) has been extended by the addition of the
eXtensible Markup Language (XML) 1 as an alternative to HDF. XML is a text-based format that supports compression
and structured data and has broad usage in business and e-commerce. While possibly complicated, XML files are
human readable, and tools for translation and extraction are plentiful. The API has routines to read and write XML
data and to convert between HDF and XML.

NeXus as a Common Data Exchange Format By the late 1980s, it had become common practice for a scientific
instrument or facility to define its own data format, often at the convenience of the local computer system. Data
from these facilities were not easily interchanged due to various differences in computer systems and the compression
schemes of binary data. It was necessary to contact the facility to obtain a description so that one could write an import
routine in software. Experience with facilities closing (and subsequent lack of access to information describing the
facility data format) revealed a significant limitation with this common practice. Further, there existed a N * N number
of conversion routines necessary to convert data between various formats. In N separate file formats, circles represent
different data file formats while arrows represent conversion routines. Note that the red circle only maps to one other
format.

Figure 1.1: N separate file formats

One early idea has been for NeXus to become the common data exchange format, and thereby reduce the number
of data conversion routines from N * N down to 2N, as show in N separate file formats joined by a common NeXus
converter.

Defined dictionary of terms A necessary feature of a standard for the interchange of scientific data is a ‘ defined
dictionary (or lexicography) of terms. This dictionary declares the expected spelling and meaning of terms when they
are present so that it is not necessary to search for all the variant forms of energy when it is used to describe data (e.g.,
E, e, keV, eV, nrg, ...).

NeXus recognized that each scientific specialty has developed a unique dictionary and needs to categorize data using
those terms. The NeXus Application Definitions provide the means to document the lexicography for use in data files
of that scientific specialty.

1 XML: http://www.w3.org/XML/. There are many other descriptions of XML, for example: http://en.wikipedia.org/wiki/XML

12 Chapter 1. NeXus: User Manual

http://www.w3.org/XML/
http://en.wikipedia.org/wiki/XML

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 1.2: N separate file formats joined by a common NeXus converter

NAPI: The NeXus Application Programming Interface

The NeXus API consists of routines to read and write NeXus data files. It was written to provide a simple to use and
consistent common interface for all supported backends (XML, HDF4 and HDF5) to scientific programmers and other
users of the NeXus Data Standard.

Note: It is not necessary to use the NAPI to write or read NeXus data files. The intent of the NAPI is to simplify the
programming effort to use the HDF programming interface. There are Examples of writing and reading NeXus data
files to help you understand.

This section will provide a brief overview of the available functionality. Further documentation of the NeXus Applica-
tion Programming Interface (NAPI) for bindings to specific programming language can be found in the NAPI chapter
and may be downloaded from the NeXus development site. 2

For an even more detailed description of the internal workings of NAPI see NeXusIntern.pdf, copied from the
NeXus code repository. That document is written for programmers who want to work on the NAPI itself. If you are
new to NeXus and just want to implement basic file reading or writing you should not start by reading that.

How do I write a NeXus file? The NeXus Application Program Interface (NAPI) provides a set of subroutines that
make it easy to read and write NeXus files. These subroutines are available in C, Fortran 77, Fortran 90, Java, Python,
C++, and IDL.

The API uses a very simple state model to navigate through a NeXus file. (Compare this example with NAPI Simple
2-D Write Example (C, F77, F90), in the NAPI chapter, using the native HDF5 commands.) When you open a file,
the API provides a file handle, which stores the current location, i.e. which group and/or field is currently open. Read
and write operations then act on the currently open entity. Following the simple example titled Example structure of
a simple data file, we walk through a schematic of NeXus program written in C (without any error checking or real
data).

Writing a simple NeXus file using NAPI

1 #include "napi.h"
2

2 http://download.nexusformat.org

1.1. NeXus Introduction 13

http://download.nexusformat.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3 int main()
4 {
5 NXhandle fileID;
6 NXopen ("NXfile.nxs", NXACC_CREATE, &fileID);
7 NXmakegroup (fileID, "Scan", "NXentry");
8 NXopengroup (fileID, "Scan", "NXentry");
9 NXmakegroup (fileID, "data", "NXdata");

10 NXopengroup (fileID, "data", "NXdata");
11 /* somehow, we already have arrays tth and counts, each length n*/
12 NXmakedata (fileID, "two_theta", NX_FLOAT32, 1, &n);
13 NXopendata (fileID, "two_theta");
14 NXputdata (fileID, tth);
15 NXputattr (fileID, "units", "degrees", 7, NX_CHAR);
16 NXclosedata (fileID); /* two_theta */
17 NXmakedata (fileID, "counts", NX_FLOAT32, 1, &n);
18 NXopendata (fileID, "counts");
19 NXputdata (fileID, counts);
20 NXclosedata (fileID); /* counts */
21 NXclosegroup (fileID); /* data */
22 NXclosegroup (fileID); /* Scan */
23 NXclose (&fileID);
24 return;
25 }

program analysis

1. line 6: Open the file NXfile.nxs with create access (implying write access). NAPI 3 returns a file identifier
of type NXhandle.

2. line 7: Next, we create the NXentry group to contain the scan using NXmakegroup() and then open it for
access using NXopengroup(). 4

3. line 9: The plottable data is contained within an NXdata group, which must also be created and opened.

4. line 12: To create a field, call NXmakedata(), specifying the data name, type (NX_FLOAT32), rank (in this
case, 1), and length of the array (n). Then, it can be opened for writing. 5

5. line 14: Write the data using NXputdata().

6. line 15: With the field still open, we can also add some data attributes, such as the data units, 6 7 which are
specified as a character string (type="NX_CHAR" 8) that is 7 bytes long.

7. line 16: Then we close the field before opening another. In fact, the API will do this automatically if you
attempt to open another field, but it is better style to close it yourself.

8. line 17: The remaining fields in this group are added in a similar fashion. Note that the indentation whenever a
new field or group are opened is just intended to make the structure of the NeXus file more transparent.

9. line 20: Finally, close the groups (NXdata and NXentry) before closing the file itself.

How do I read a NeXus file? Reading a NeXus file works in the same way by traversing the tree with the handle.

3 NAPI: NeXus Application Programmer Interface (frozen)
4 See the chapter Base Class Definitions for more information.
5 The NeXus Data Types section describes the available data types, such as NX_FLOAT32 and NX_CHAR.
6 NeXus Data Units
7 The NeXus rule about data units is described in the NeXus Data Units section.
8 see Data Types allowed in NXDL specifications

14 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This schematic C code will read the two-theta array created in the example above. (Again, compare this example with
Reading a simple NeXus file using native HDF5 commands in C.)

Reading a simple NeXus file using NAPI

1 NXopen (’NXfile.nxs’, NXACC_READ, &fileID);
2 NXopengroup (fileID, "Scan", "NXentry");
3 NXopengroup (fileID, "data", "NXdata");
4 NXopendata (fileID, "two_theta");
5 NXgetinfo (fileID, &rank, dims, &datatype);
6 NXmalloc ((void **) &tth, rank, dims, datatype);
7 NXgetdata (fileID, tth);
8 NXclosedata (fileID);
9 NXclosegroup (fileID);

10 NXclosegroup (fileID);
11 NXclose (fileID);

How do I browse a NeXus file? NeXus files can also be viewed by a command-line browser, nxbrowse, which is
included as a helper tool in the NeXus API distribution. The following is an example session of nxbrowse nxbrowse
to view a data file.

Using nxbrowse

1 %> nxbrowse lrcs3701.nxs
2

3 NXBrowse 3.0.0. Copyright (C) 2000 R. Osborn, M. Koennecke, P. Klosowski
4 NeXus_version = 1.3.3
5 file_name = lrcs3701.nxs
6 file_time = 2001-02-11 00:02:35-0600
7 user = EAG/RO
8 NX> dir
9 NX Group : Histogram1 (NXentry)

10 NX Group : Histogram2 (NXentry)
11 NX> open Histogram1
12 NX/Histogram1> dir
13 NX Data : title[44] (NX_CHAR)
14 NX Data : analysis[7] (NX_CHAR)
15 NX Data : start_time[24] (NX_CHAR)
16 NX Data : end_time[24] (NX_CHAR)
17 NX Data : run_number (NX_INT32)
18 NX Group : sample (NXsample)
19 NX Group : LRMECS (NXinstrument)
20 NX Group : monitor1 (NXmonitor)
21 NX Group : monitor2 (NXmonitor)
22 NX Group : data (NXdata)
23 NX/Histogram1> read title
24 title[44] (NX_CHAR) = MgB2 PDOS 43.37g 8K 120meV E0@240Hz T0@120Hz
25 NX/Histogram1> open data
26 NX/Histogram1/data> dir
27 NX Data : title[44] (NX_CHAR)
28 NX Data : data[148,750] (NX_INT32)

1.1. NeXus Introduction 15

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

29 NX Data : time_of_flight[751] (NX_FLOAT32)
30 NX Data : polar_angle[148] (NX_FLOAT32)
31 NX/Histogram1/data> read time_of_flight
32 time_of_flight[751] (NX_FLOAT32) = [1900.000000 1902.000000 1904.000000 ...]
33 units = microseconds
34 long_name = Time-of-Flight [microseconds]
35 NX/Histogram1/data> read data
36 data[148,750] (NX_INT32) = [1 1 0 ...]
37 units = counts
38 signal = 1
39 long_name = Neutron Counts
40 axes = polar_angle:time_of_flight
41 NX/Histogram1/data> close
42 NX/Histogram1> close
43 NX> quit

program analysis

1. line 1: Start nxbrowse from the UNIX command line and open file lrcs3701.nxs from IPNS/LRMECS.

2. line 8: List the contents of the current group.

3. line 11: Open the NeXus group Histogram1.

4. line 23: Print the contents of the NeXus data labeled title.

5. line 41: Close the current group.

6. line 43: Quits nxbrowse.

The source code of nxbrowse 9 provides an example of how to write a NeXus reader. The test programs included in
the NeXus API may also be useful to study.

1.2 NeXus Design

This chapter actually defines the rules to use for writing valid NeXus files. An explanation of NeXus objects is
followed by the definition of NeXus coordinate systems, the rules for structuring files and the rules for storing single
items of data.

The structure of NeXus files is extremely flexible, allowing the storage both of simple data sets, such as a single
data array and its axes, and also of highly complex data, such as the simulation results or an entire multi-component
instrument. This flexibility is a necessity as NeXus strives to capture data from a wild variety of applications in
X-ray, muSR and neutron scattering. The flexibility is achieved through a hierarchical structure, with related fields
collected together into groups, making NeXus files easy to navigate, even without any documentation. NeXus files are
self-describing, and should be easy to understand, at least by those familiar with the experimental technique.

Note: In this manual, we use the terms field, data field, and data item synonymously to be consistent
with their meaning between NeXus data file instances and NXDL specification files.

9 https://svn.nexusformat.org/code/trunk/applications/NXbrowse/NXbrowse.c

16 Chapter 1. NeXus: User Manual

https://svn.nexusformat.org/code/trunk/applications/NXbrowse/NXbrowse.c

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1.2.1 NeXus Objects and Terms

Before discussing the design of NeXus in greater detail it is necessary to define the objects and terms used by NeXus.
These are:

Data Groups Group data fields and other groups together. Groups represent levels in the NeXus hierarchy

Data Fields Multidimensional arrays and scalars representing the actual data to be stored

Data Attributes Additional metadata which can be assigned to groups or data fields

Links Elements which point to data stored in another place in the file hierarchy

NeXus Base Classes Dictionaries of names possible in the various types of NeXus groups

NeXus Application Definitions Describe the minimum content of a NeXus file for a particular usage case

In the following sections these elements of NeXus files will be defined in more detail.

Data Groups

NeXus files consist of data groups, which contain fields and/or other groups to form a hierarchical structure. This
hierarchy is designed to make it easy to navigate a NeXus file by storing related fields together. Data groups are
identified both by a name, which must be unique within a particular group, and a class. There can be multiple groups
with the same class but they must have different names (based on the HDF rules).

For the class names used with NeXus data groups the prefix NX is reserved. Thus all NeXus class names start with
NX.

Data Fields

Data fields contain the essential information stored in a NeXus file. They can be scalar values or multidimensional
arrays of a variety of sizes (1-byte, 2-byte, 4-byte, 8-byte) and types (integers, floats, characters). The fields may store
both experimental results (counts, detector angles, etc), and other information associated with the experiment (start and
end times, user names, etc). Data fields are identified by their names, which must be unique within the group in which
they are stored. Some fields have engineering units to be specified. In some cases, such in NXdetector/data, a
field is expected to have be an array of several dimensions.

Examples of data fields

variable (NX_NUMBER) Dimension scale defining an axis of the data.

variable_errors (NX_NUMBER) Errors (uncertainties) associated with axis variable.

wavelength (NX_FLOAT) wavelength of radiation, units="NX_FLOAT"

chemical_formula (NX_CHAR) The chemical formula specified using CIF conventions.

name (NX_CHAR) Name of user responsible for this entry.

data (NX_NUMBER) Data values from the detector, units="NX_ANY"

Data Attributes

Attributes are extra (meta-)information that are associated with particular fields. They are used to annotate the data,
e.g. with physical units or calibration offsets, and may be scalar numbers or character strings. In addition, NeXus uses
attributes to identify plottable data and their axes, etc. A description of some of the many possible attributes can be
found in the next table:

1.2. NeXus Design 17

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Examples of data attributes

units (NX_CHAR) Data units given as character strings, must conform to the NeXus units standard.
See the NeXus Data Units section for details.

signal (NX_POSINT) Defines which data set contains the signal to be plotted, use signal=1 for
main signal, signal=2 for a second item to plot, and so on.

axes (NX_CHAR) axes defines the names of the dimension scales for this data set as a colon-delimited
list. Note that some legacy data files may use a comma as delimiter.

For example, suppose data is an array with elements data[j][i] (C) or data(i,j) (Fortran),
with dimension scales time_of_flight[i] and polar_angle[j], then data would have
an attribute axes="polar_angle:time_of_flight" in addition to an attribute signal=1.

axis (NX_POSINT) The original way of designating data for plotting, now superceded by the axes
attribute. This defines the rank of the signal data for which this data set is a dimension scale in order
of the fastest varying index (see a longer discussion in the section on NXdata structure), i.e. if the
array being stored is data, with elements data[j][i] in C and data(i,j) in Fortran, axis
would have the following values: ith dimension (axis=1), jth dimension (axis=2), etc.

primary (NX_POSINT) Defines the order of preference for dimension scales which apply to the same
rank of signal data. Use primary=1 to indicate preferred dimension scale

long_name (NX_CHAR) Defines title of signal data or axis label of dimension scale

calibration_status (NX_CHAR) Defines status of data value - set to Nominal or Measured

offset (NX_INT) Rank values of offsets to use for each dimension if the data is not in C storage order

stride (NX_INT) Rank values of steps to use when incrementing the dimension

vector (NX_FLOAT) 3 values describing the axis of rotation or the direction of translation

interpretation (NX_CHAR) Describes how to display the data. Allowed values include:

• scaler (0-D data)

• spectrum (1-D data)

• image (2-D data)

• vertex (3-D data)

Finally, NeXus files themselves have global attributes which are listed in the next table. These attributes identify the
NeXus version, file creation time, etc. All attributes are identified by their names, which must be unique within each
field.

Examples of global attributes

file_name (NX_CHAR) File name of original NeXus file to assist in identification if the external name
has been changed

file_time (ISO 8601) Date and time of file creation

file_update_time (ISO 8601) Date and time of last file change at close

NeXus_version (NX_CHAR) Version of NeXus API used in writing the file

creator (NX_CHAR) Facility or program where the file originated

18 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Links

Links are pointers to existing data somewhere else. The concept is very much like symbolic links in a unix filesystem.
The NeXus definition sometimes requires to have access to the same data in different groups in the same file. For
example: detector data is stored in the NXinstrument/NXdetector group but may be needed in NXdata for
automatic plotting. Rather then replicating the data, NeXus uses links in such situations. See the figure for a more
descriptive representation of the concept of linking.

Figure 1.3: Linking in a NeXus file

NeXus also allows for links to external files. Consider the case where an instrument uses a detector with a closed-
system software support provided by a commercial vendor. This system writes its images into a NeXus HDF5 file.
The instrument’s data acquisition system writes instrument metadata into another NeXus HDF5 file. In this case, the
instrument metadata file might link to the data in the detector image file. Here is an example (from Diamond Light
Source) showing an external file link in HDF5:

Example of linking to data in an external HDF5 file

1 EXTERNAL_LINK "data" {
2 TARGETFILE "/dls/i22/data/2012/sm7594-1/i22-69201-Pilatus2M.h5"
3 TARGETPATH "entry/instrument/detector/data"
4 }

NeXus Base Classes

Data groups often describe objects in the experiment (monitors, detectors, monochromators, etc.), so that the contents
(both data fields and/or other data groups) comprise the properties of that object. NeXus has defined a set of standard
objects, or base classes, out of which a NeXus file can be constructed. This is each data group is identified by a
name and a class. The group class, defines the type of object and the properties that it can contain, whereas the group
name defines a unique instance of that class. These classes are defined in XML using the NeXus Definition Language
(NXDL) format. All NeXus class types adopted by the NIAC must begin with NX. Classes not adopted by the NIAC
must not start with NX.

Note: NeXus base classes are the components used to build the NeXus data structure.

1.2. NeXus Design 19

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Not all classes define physical objects. Some refer to logical groupings of experimental information, such as plottable
data, sample environment logs, beam profiles, etc. There can be multiple instances of each class. On the other hand, a
typical NeXus file will only contain a small subset of the possible classes.

Note: The groups, fields, links, and attributes of a base class definition are all optional, with a few particular
exceptions in NXentry and NXdata. They are named in the specification to describe the exact spelling and usage of
the term when it appears.

NeXus base classes are not proper classes in the same sense as used in object oriented programming languages. In fact
the use of the term classes is actually misleading but has established itself during the development of NeXus. NeXus
base classes are rather dictionaries of field names and their meanings which are permitted in a particular NeXus group
implementing the NeXus class. This sounds complicated but becomes easy if you consider that most NeXus groups
describe instrument components. Then for example, a NXmonochromator base class describes all the possible field
names which NeXus allows to be used to describe a monochromator.

Most NeXus base classes represent instrument components. Some are used as containers to structure information in
a file (NXentry, NXcollection, NXinstrument, NXprocess, NXparameter). But there are some base
classes which have special uses which need to be mentioned here:

NXdata NXdata is used to identify the default plottable data. The notion of a default plot of data is a basic motivation
of NeXus.

NXlog NXlog is used to store time stamped data like the log of a temperature controller. Basically you give a start
time, and arrays with a difference in seconds to the start time and the values read.

NXnote This group provides a place to store general notes, images, video or whatever. A mime type is stored together
with a binary blob of data. Please use this only for auxiliary information, for example an image of your sample,
or a photo of your boss.

NXgeometry NXgeometry and its subgroups NXtranslation, NXorientation, NXshape are used to store
absolute positions in the laboratory coordinate system or to define shapes.

These groups can appear anywhere in the NeXus hierarchy, where needed. Preferably close to the component they
annotate or in a NXcollection. All of the base classes are documented in the reference manual.

NXdata Facilitates Automatic Plotting

The most notable special base class (or group in NeXus) is NXdata. NXdata is the answer to a basic motivation
of NeXus to facilitate automatic plotting of data. NXdata is designed to contain the main dataset and its associated
dimension scales (axes) of a NeXus data file. The usage scenario is that an automatic data plotting program just opens
a NXentry and then continues to search for any NXdata groups. These NXdata groups represent the plottable data.
An algorithm for identifying the default plottable data is presented in the chapter titled Rules for Storing Data Items
in NeXus Files.

Where to Store Metadata

There are many ways to store metadata about your experiments. Already there are many fields in the various base
classes to store the more common or general metadata, such as wavelength. (For wavelength, see the Strategies: The
wavelength section.)

One common scheme is to store the metadata all in one group. If the group is to be validated for content, then there
are several possibilities, as shown in the next table:

20 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

base class intent
NXnote to store additional information
NXlog information that is time-stamped
NXparameters parameters for processing or analysis
NXcharacterization do not use this, as it may be removed later

If the content of the metadata group is to be excluded from validation, then store it in a NXcollection group.

NeXus Application Definitions

The objects described so far provide us with the means to store data from a wide variety of instruments, simulations,
or processed data as resulting from data analysis. But NeXus strives to express strict standards for certain applications
of NeXus, too. The tool which NeXus uses for the expression of such strict standards is the NeXus Application
Definition. A NeXus Application Definition describes which groups and data items have to be present in a file in order
to properly describe an application of NeXus. For example for describing a powder diffraction experiment. Typically
an application definition will contain only a small subset of the many groups and fields defined in NeXus. NeXus
application definitions are also expressed in the NeXus Definition Language (NXDL). A tool exists which allows one
to validate a NeXus file against a given application definition.

Note: NeXus application definitions define the minimum required information necessary to satisfy data analysis or
other data processing.

Another way to look at a NeXus application definition is as a contract between a file producer (writer) and a file
consumer (reader).

The contract reads: If you write your files following a particular NeXus application definition, I can
process these files with my software.

Yet another way to look at a NeXus application definition is to understand it as an interface definition between data files
and the software which uses this file. Much like an interface in the Java or other modern object oriented programming
languages.

In contrast to NeXus base classes, NeXus supports inheritance in application definitions.

Please note that a NeXus Application Definition will only define the bare minimum of data necessary to perform
common analysis with data. Practical files will nearly always contain more data. One of the beauties of NeXus is that
it is always possible to add more data to a file without breaking its compliance with its application definition.

1.2.2 NeXus Coordinate Systems

The NeXus coordinate system is shown below. Note that it is the same as that used by McStas (http://mcstas.risoe.dk).

Note: The NeXus definition of +z is opposite to that in the IUCr International Tables for Crystallography, volume G,
and consequently, +x is also reversed.

Coordinate systems in NeXus have undergone significant development. Initially, only motor positions of the relevant
motors were stored without further standardization. This soon proved to be too little and the NeXus polar coordinate
system was developed. This system still is very close to angles that are meaningful to an instrument scientist but allows
to define general positions of components easily. Then users from the simulation community approached the NeXus
team and asked for a means to store absolute coordinates. This was implemented through the use of the NXgeometry
class on top of the McStas system. We soon learned that all the things we do can be expressed through the McStas

1.2. NeXus Design 21

http://mcstas.risoe.dk

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 1.4: NeXus coordinate system, as viewed from detector

coordinate system. So it became the reference coordinate system for NeXus. NXgeometry was expanded to allow
the description of shapes when the demand came up. Later, members of the CIF team convinced the NeXus team of
the beauty of transformation matrices and NeXus was enhanced to store the necessary information to fully map CIF
concepts. Not much had to be changed though as we choose to document the existing angles in CIF terms. The CIF
system allows to store arbitrary operations and nevertheless calculate absolute coordinates in the laboratory coordinate
system. It also allows to convert from local, for example detector coordinate systems, to absolute coordinates in the
laboratory system.

Please note that NXgeometry and the polar coordinate system are suggested to be deprecated. For new projects, rather
use the CIF approach.

McStas and NXgeometry System

As stated above, NeXus uses the McStas coordinate system (http://mcstas.risoe.dk) as its laboratory coordinate system.
The instrument is given a global, absolute coordinate system where the z axis points in the direction of the incident
beam, the x axis is perpendicular to the beam in the horizontal plane pointing left as seen from the source, and the y
axis points upwards. See below for a drawing of the McStas coordinate system. The origin of this coordinate system
is the sample position or, if this is ambiguous, the center of the sample holder with all angles and translations set to
zero. The McStas coordinate system is illustrated in the next figure:

The NeXus NXgeometry class directly uses the McStas coordinate system. NXgeometry classes can appear in
any component in order to specify its position. The suggested name to use is geometry. In NXgeometry the
NXtranslation/values field defines the absolute position of the component in the McStas coordinate system.
The NXorientation/value field describes the orientation of the component as a vector of in the McStas coordi-
nate system.

Please note that it is planned to deprecate NXgeometry in favour of the transformation based system described below.

22 Chapter 1. NeXus: User Manual

http://mcstas.risoe.dk

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 1.5: The McStas Coordinate System

Simple (Spherical Polar) Coordinate System

In this system, the instrument is considered as a set of components through which the incident beam passes. The
variable distance is assigned to each component and represents the effective beam flight path length between this
component and the sample. A sign convention is used where negative numbers represent components pre-sample and
positive numbers components post-sample. At each component there is local spherical coordinate system with the
angles polar_angle and azimuthal_angle. The size of the sphere is the distance to the previous component.

In order to understand this spherical polar coordinate system it is helpful to look initially at the common condition that
azimuthal_angle is zero. This corresponds to working directly in the horizontal scattering plane of the instrument. In
this case polar_angle maps directly to the setting commonly known as two theta. Now, there are instruments where
components live outside of the scattering plane. Most notably detectors. In order to describe such components we first
apply the tilt out of the horizontal scattering plane as the azimuthal_angle. Then, in this tilted plane, we rotate to the
component. The beauty of this is that polar_angle is always two theta. Which, in the case of a component out of the
horizontal scattering plane, is not identical to the value read from the motor responsible for rotating the component.
This situation is shown in Polar Coordinate System.

Figure 1.6: NeXus Simple (Spherical Polar) Coordinate System

Please note that it is planned to deprecate this polar system in favour of the transformation based system
described below.

Coordinate Transformations

Another way to look at coordinates is through the use of transformation matrices. In this world view, the absolute
position of a component or a detector pixel with respect to the laboratory coordinate system is calculated by applying

1.2. NeXus Design 23

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

a series of translations and rotations. These operations are commonly expressed as transformation matrices and their
combination as matrix multiplication. A very important aspect is that the order of application of the individual oper-
ations does matter. Another important aspect is that any operation transforms the whole coordinate system and gives
rise to a new local coordinate system. The mathematics behind this is well known and used in such applications such
as industrial robot control, space flight and computer games. The beauty in this comes from the fact that the operations
to apply map easily to instrument settings and constants. It is also easy to analyze the contribution of each individual
operation: this can be studied under the condition that all other operations are at a zero setting.

In order to use coordinate transformations, several morsels of information need to be known:

Type The type of operation: rotation or translation

Direction The direction of the translation or the direction of the rotation axis

Value The angle of rotation or the length of the translation

Order The order of operations to apply to move a component into its place.

NeXus chooses to encode this information in the following way:

Type Through a data set attribute transformation_type. This can take the value of either translation or
rotation.

Direction Through a data set attribute vector. This is a set of three values describing either the compo-
nents of the rotation axis or the direction along which the translation happens.

Value This is represented in the actual data of the data set. In addition, there is the offset attribute which
has three components describing a translation to apply before applying the operation of the real axis.
Without the offset attribute additional virtual translations would need to be introduced in order to
encode mechanical offsets in the axis.

Order The order is encoded through the depends_on attribute on a data set. The value of the depends_on
attribute is the axis upon which the current axis sits. If the axis sits in the same group it is just a name,
if it is in another group it is a path to the dependent axis. In addition, for each beamline component,
there is a depends_on field which points to the data set at the head of the axis dependency chain.
Take as an example an eulerian cradle as used on a four-circle diffractometer. Such a cradle has a
dependency chain of phi:chi:rotation_angle. Then the depends_on field in NXsample
would have the value phi.

NeXus Transformation encoding

Transformation encoding for an eulerian cradle on a four-circle diffractometer

1 sample:NXsample
2 rotation_angle
3 @transformation_type=rotation

4 @vector=0,1,0

5 @offset=0,0,0,
6 chi
7 @transformation_type=rotation

8 @vector=0,0,1

9 @offset=0,0,0,

10 @depends_on=rotation_angle
11 phi
12 @transformation_type=rotation

13 @vector=0,1,0

14 @offset=0,0,0,

15 @depends_on=chi

24 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

16 depends_on
17 phi

The type and direction of the NeXus standard operations is documented below in the table: Actions of standard NeXus
fields. The rule is to always give the attributes to make perfectly clear how the axes work. The CIF scheme also allows
to store and use arbitrarily named axes in a NeXus file.

Actions of standard NeXus fields

Transformation Actions

Field Name transformation_type vector
polar_angle rotation 0 1 0
azimuthal_angle rotation 0 0 1
meridional_angle rotation 1 0 0
distance translation 0 0 1
height translation 0 1 0
x_translation translation 1 0 0
chi rotation 0 0 1
phi rotation 0 1 0

For the NeXus spherical coordinate system, the order is implicit and is given in the next example.

implicit order of NeXus spherical coordinate system

azimuthal_angle:polar_angle:distance

This is also a nice example of the application of transformation matrices:

1. You first apply azimuthal_angle as a rotation around z. This rotates the whole coordinate out of the plane.

2. Then you apply polar_angle as a rotation around y in the tilted coordinate system.

3. This also moves the direction of the z vector. Along which you translate the component to place by distance.

1.2.3 Rules and Underlying File Formats

Rules for Structuring Information in NeXus Files

All NeXus files contain one or many groups of type NXentry at root level. Many files contain only one NXentry
group, then the name is entry. The NXentry level of hierarchy is there to support the storage of multiple related
experiments in one file. Or to allow the NeXus file to serve as a container for storing a whole scientific workflow from
data acquisition to publication ready data. Also, NXentry class groups can contain raw data or processed data. For
files with more than one NXentry group, since HDF requires that no two items at the same level in an HDF file may
have the same name, the NeXus fashion is to assign names with an incrementing index appended, such as entry1,
entry2, entry3, etc.

In order to illustrate what is written in the text, example hierarchies like the one in figure Raw Data are provided.

Content of a Raw Data NXentry Group

An example raw data hierarchy is shown in figure Raw Data (only showing the relevant parts of the data hierarchy). In
the example shown, the data field in the NXdata group is linked to the 2-D detector data (a 512x512 array of 32-bit

1.2. NeXus Design 25

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

integers) which has the attribute signal=1. Note that [,] represents a 2D array.

NeXus Raw Data Hierarchy

1 entry:NXentry
2 instrument:NXinstrument
3 source:NXsource
4
5 detector:NXdetector
6 data:NX_INT32[512,512]
7 @signal = 1
8 sample:NXsample
9 control:NXmonitor

10 data:NXdata
11 data --> /entry/instrument/detector/data

An NXentry describing raw data contains at least a NXsample, one NXmonitor, one NXdata and a
NXinstrument group. It is good practice to use the names sample for the NXsample group, control for
the NXmonitor group holding the experiment controlling monitor and instrument for the NXinstrument
group. The NXinstrument group contains further groups describing the individual components of the instrument
as appropriate.

The NXdata group contains links to all those data items in the NXentry hierarchy which are required to put up a
default plot of the data. As an example consider a SAXS instrument with a 2D detector. The NXdata will then hold
a link to the detector image. If there is only one NXdata group, it is good practice to name it data. Otherwise, the
name of the detector bank represented is a good selection.

Content of a processed data NXentry group

Processed data, see figure Processed Data, in this context means the results of a data reduction or data analysis
program. Note that [] represents a 1D array.

NeXus Processed Data Hierarchy

1 entry:NXentry
2 reduction:NXprocess
3 program_name = "pyDataProc2010"
4 version = "1.0a"
5 input:NXparameter
6 filename = "sn2013287.nxs"
7 sample:NXsample
8 data:NXdata
9 data

10 @signal = 1

NeXus stores such data in a simplified NXentry structure. A processed data NXentry has at minimum a
NXsample, a NXdata and a NXprocess group. Again the preferred name for the NXsample group is sample.
In the case of processed data, the NXdata group holds the result of the processing together with the associated axis
data. The NXprocess group holds the name and version of the program used for this processing step and further
NXparameter groups. These groups ought to contain the parameters used for this data processing step in suitable
detail so that the processing step can be reproduced.

Optionally a processed data NXentry can hold a NXinstrument group with further groups holding relevant infor-
mation about the instrument. The preferred name is again instrument. Whereas for a raw data file, NeXus strives

26 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

to capture as much data as possible, a NXinstrument group for processed data may contain a much-reduced subset.

NXsubentry or Multi-Method Data

Especially at synchrotron facilities, there are experiments which perform several different methods on the sample at
the same time. For example, combine a powder diffraction experiment with XAS. This may happen in the same scan,
so the data needs to be grouped together. A suitable NXentry would need to adhere to two different application
definitions. This leads to name clashes which cannot be easily resolved. In order to solve this issue, the following
scheme was implemented in NeXus:

• The complete beamline (all data) is stored in an appropriate hierarchy in an NXentry.

• The NXentry group contains further NXsubentry groups, one for each method. Each NXsubentry group
is constructed like a NXentry group. It contains links to all those data items required to fulfill the application
definition for the particular method it represents.

See figure NeXus Multi Method Hierarchy for an example hierarchy. Note that [,] represents a 2D array.

NeXus Multi Method Hierarchy

1 entry:NXentry
2 user:NXuser
3 sample:NXsample
4 instrument:NXinstument
5 SASdet:NXdetector
6 data:[,]
7 @signal = 1
8 fluordet:NXdetector
9 data:[,]

10 @signal = 1
11 large_area:NXdetector
12 data:[,]
13 SAS:NXsubentry
14 definition = "NXsas"
15 instrument:NXinstrument
16 detector:NXdetector
17 data --> /entry/instrument/SASdet/data
18 data:NXdata
19 data --> /entry/instrument/SASdet/data
20 Fluo:NXsubentry
21 definition = "NXFluo"
22 instrument:NXinstrument
23 detector --> /entry/instrument/fluordet/data
24 detector2 --> /entry/instrument/large_area/data
25 data:NXdata
26 detector --> /entry/instrument/fluordet/data

Rules for Special Cases

Scans Scans are difficult to capture because they have great variety. Basically, any variable can be scanned. Such
behaviour cannot be captured in application definitions. Therefore NeXus solves this difficulty with a set of rules. In
this section, NP is used as a symbol for the number of scan points.

1.2. NeXus Design 27

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• The scan dimension NP is always the first dimension of any multi-dimensional dataset. The reason for this is
that HDF allows the first dimension of a dataset to be unlimited. Which means, that data can be appended to the
dataset during the scan.

• All data is stored as arrays of dimensions NP, original dimensions of the data at the appropriate position in the
NXentry hierarchy.

• The NXdata group has to contain links to all variables varied during the scan and the detector data. Thus the
NXdata group mimics the usual tabular representation of a scan.

• Datasets in an NXdata group must contain the proper attributes to enable the default plotting, as described in
the section titled NXdata Facilitates Automatic Plotting.

Simple scan Examples may be in order here. Let us start with a simple case, the sample is rotated around its rotation
axis and data is collected in a single point detector. See figure Simple Scan for an overview. Then we have:

• A dataset at NXentry/NXinstrument/NXdetector/data of length NP containing the count
data.

• A dataset at NXentry/NXsample/rotation_angle of length NP containing the positions of
rotation_angle at the various steps of the scan.

• NXdata contains links to:

– NXentry/NXinstrument/NXdetector/data

– NXentry/NXsample/rotation_angle

• All other data fields have their normal dimensions.

NeXus Simple Scan Example

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data[NP]
5 @signal = 1
6 sample:NXsample
7 rotation_angle[NP]
8 @axis=1
9 control:NXmonitor

10 data[NP]
11 data:NXdata
12 data --> /entry/instrument/detector/data
13 rotation_angle --> /entry/sample/rotation_angle

Simple scan with area detector The next example is the same scan but with an area detector with xsize times
ysize pixels. The only thing which changes is that /NXentry/NXinstrument/NXdetector/data will have
the dimensions NP, xsize, ysize. See figure Simple Scan with Area Detector for an overview.

NeXus Simple Scan Example with Area Detector

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data:[NP,xsize,ysize]

28 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5 @signal = 1
6 sample:NXsample
7 rotation_angle[NP]
8 @axis=1
9 control:NXmonitor

10 data[NP]
11 data:NXdata
12 data --> /entry/instrument/detector/data
13 rotation_angle --> /entry/sample/rotation_angle

Complex hkl scan The next example involves a complex movement along an axis in reciprocal space which requires
mutiple motors of a four-circle diffractometer to be varied during the scan. We then have:

• A dataset at NXentry/NXinstrument/NXdetector/data of length NP containing the count data.

• A dataset at NXentry/NXinstrument/NXdetector/polar_angle of length NP containing the posi-
tions of the detector’s polar_angle at the various steps of the scan.

• A dataset at NXentry/NXsample/rotation_angle of length NP containing the positions of
rotation_angle at the various steps of the scan.

• A dataset at NXentry/NXsample/chi of length NP containing the positions of chi at the various steps of
the scan.

• A dataset at NXentry/NXsample/phi of length NP containing the positions of phi at the various steps of
the scan.

• A dataset at NXentry/NXsample/h of length NP containing the positions of the reciprocal coordinate h at
the various steps of the scan.

• A dataset at NXentry/NXsample/k of length NP containing the positions of the reciprocal coordinate k at
the various steps of the scan.

• A dataset at NXentry/NXsample/l of length NP containing the positions of the reciprocal coordinate l at
the various steps of the scan.

• NXdata contains links to:

– NXentry/NXinstrument/NXdetector/data

– NXentry/NXinstrument/NXdetector/polar_angle

– NXentry/NXsample/rotation_angle

– NXentry/NXsample/chi

– NXentry/NXsample/phi

– NXentry/NXsample/h

– NXentry/NXsample/k

– NXentry/NXsample/l

The datasets in NXdata must have the appropriate attributes as described in the axis location section.

• All other data fields have their normal dimensions.

1.2. NeXus Design 29

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus Complex hkl Scan

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data[NP]
5 @signal = 1
6 polar_angle[NP]
7 @axis = 1
8 name
9 sample:NXsample

10 name
11 rotation_angle[NP]
12 @axis=1
13 chi[NP]
14 @axis=1
15 phi[NP]
16 @axis=1
17 h[NP]
18 @axis=1

19 @primary=1
20 k[NP]
21 @axis=1
22 l[NP]
23 @axis=1
24 control:NXmonitor
25 data[NP]
26 data:NXdata
27 data --> /entry/instrument/detector/data
28 rotation_angle --> /entry/sample/rotation_angle
29 chi --> /entry/sample/chi
30 phi --> /entry/sample/phi
31 polar_angle --> /entry/instrument/detector/polar_angle
32 h --> /entry/sample/h
33 k --> /entry/sample/k
34 l --> /entry/sample/l

Multi-parameter scan: XAS Data can be stored almost anywhere in the NeXus tree. While the previous examples
showed data arrays in either NXdetector or NXsample, this example demonstrates that data can be stored in other
places. Links are used to reference the data.

The example is for X-ray Absorption Spectroscopy (XAS) data where the monochromator energy is step-scanned
and counts are read back from detectors before (I0) and after (I) the sample. These energy scans are repeated at a
sequence of sample temperatures to map out, for example, a phase transition. While it is customary in XAS to plot
log(I0/I), we show them separately here in two different NXdata groups to demonstrate that such things are possible.
Note that the length of the 1-D energy array is NE while the length of the 1-D temperature array is NT

NeXus Multi-parameter scan: XAS

1 entry:NXentry
2 instrument:NXinstrument
3 I:NXdetector
4 data:NX_NUMBER[NE,NT]
5 @signal = 1

6 @axes = "energy:temperature"

30 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

7 energy --> /entry/monochromator/energy
8 temperature --> /entry/sample/temperature
9 I0:NXdetector

10 data:NX_NUMBER[NE,NT]
11 @signal = 1

12 @axes = "energy:temperature"
13 energy --> /entry/monochromator/energy
14 temperature --> /entry/sample/temperature
15 sample:NXsample
16 temperature:NX_NUMBER[NT]
17 monochromator:NXmonochromator
18 energy:NX_NUMBER[NE]
19 I_data:NXdata
20 data --> /entry/instrument/I/data
21 energy --> /entry/monochromator/energy
22 temperature --> /entry/sample/temperature
23 I0_data:NXdata
24 data --> /entry/instrument/I00/data
25 energy --> /entry/monochromator/energy
26 temperature --> /entry/sample/temperature

Rastering Rastering is the process of making experiments at various locations in the sample volume. Again, ras-
terisation experiments can be variable. Some people even raster on spirals! Rasterisation experiments are treated the
same way as described above for scans. Just replace NP with P, the number of raster points.

Special rules apply if a rasterisation happens on a regular grid of size xraster, yraster. Then the variables var-
ied in the rasterisation will be of dimensions xraster, yraster and the detector data of dimensions xraster,
yraster, (orginal dimensions) of the detector. For example, an area detector of size xsize, ysize
then it is stored with dimensions xraster, yraster, xsize, ysize.

Warning: Be warned: if you use the 2D rasterisation method with xraster, yraster you may end up with
invalid data if the scan is aborted prematurely. This cannot happen if the first method is used.

NXcollection On demand from the community, NeXus introduced a more informal method of storing information in
a NeXus file. This is the NXcollection class which can appear anywhere underneath NXentry. NXcollection
is a container for holding other data. The foreseen use is to document collections of similar data which do not otherwise
fit easily into the NXinstrument or NXsample hierarchy, such as the intent to record all motor positions on a
synchrotron beamline. Thus, NXcollection serves as a quick point of access to data for an instrument scientist or
another expert. NXcollection is also a feature for those who are too lazy to build up the complete NeXus hierarchy.
An example usage case is documented in figure NXcollection example.

NXcollection Example

1 entry:NXentry
2 positioners:NXcollection
3 mxx:NXpositioner
4 mzz:NXpositioner
5 sgu:NXpositioner
6 ttv:NXpositioner
7 hugo:NXpositioner
8
9 scalars:NXcollection

10 title (dataset)

1.2. NeXus Design 31

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

11 lieselotte (dataset)
12 ...
13 detectors:NXcollection
14 Pilatus:NXdata
15 MXX-45:NXdata
16

Rules for Storing Data Items in NeXus Files

This section describes the rules which apply for storing single data fields in data files.

Naming Conventions

Group and field Names used within NeXus follow a naming convention described by the following rules:

• The names of NeXus group and field items must only contain a restricted set of characters. This set may be
described by a regular expression syntax regular expression regular expression syntax, as described below.

• For the class names 10 of NeXus group items, the prefix NX is reserved. Thus all NeXus class names start with
NX. The chapter titled NeXus: Reference Documentation lists the available NeXus class names as either base
classes, application definitions, or contributed definitions.

Regular expression pattern for NXDL group and field names

It is recommended that all group and field names contain only these characters:

• lower case letters

• digits

• “_” (underscore character)

and that they begin with a lower case letter. This is the regular expression used to check this recommendation.

1 [a-z_][a-z\d_]*

The length should be limited to no more than 63 characters (imposed by the HDF5 rules for names).

It is recognized that some facilities will construct group and field names with upper case letters. NeXus data files with
upper case characters in the group or field names might not be accepted by all software that reads NeXus data files.
Hence, group and field names that do not pass the regular expression above but pass this expression:

1 [A-Za-z_][\w_]*

will be flagged as a warning during data file validation.

Use of underscore in descriptive names

Sometimes it is necessary to combine words in order to build a descriptive name for a data field or a group. In such
cases lowercase words are connected by underscores.

10 The class name is the value assigned to the NX_class attribute of an HDF5 group in the NeXus data file. This class name is different than the
name of the HDF5 group. This is important when not using the NAPI to either read or write the HDF5 data file.

32 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 number_of_lenses

For all data fields, only names from the NeXus base class dictionaries should be used. If a data field name or even
a complete component is missing, please suggest the addition to the NIAC: The NeXus International Advisory Com-
mittee. The addition will usually be accepted provided it is not a duplication of an existing field and adequately
documented.

Note: The NeXus base classes provide a comprehensive dictionary of terms that can be used for each
class. The expected spelling and definition of each term is specified in the base classes. It is not required
to provide all the terms specified in a base class. Terms with other names are permitted but might not be
recognized by standard software. Rather than persist in using names not specified in the standard, please
suggest additions to the NIAC: The NeXus International Advisory Committee.

NeXus Array Storage Order

NeXus stores multi-dimensional arrays of physical values in C language storage order, where the last dimension is the
fastest varying. This is the rule. Good reasons are required to deviate from this rule.

It is possible to store data in storage orders other than C language order.

As well it is possible to specify that the data needs to be converted first before being useful. Consider one situation,
when data must be streamed to disk as fast as possible and conversion to C language storage order causes unnecessary
latency. This case presents a good reason to make an exception to the standard rule.

Non C Storage Order In order to indicate that the storage order is different from C storage order two additional
data set attributes, offset and stride, have to be stored which together define the storage layout of the data. Offset and
stride contain rank numbers according to the rank of the multidimensional data set. Offset describes the step to make
when the dimension is multiplied by 1. Stride defines the step to make when incrementing the dimension. This is best
explained by some examples.

Offset and Stride for 1 D data:

1 * raw data = 0 1 2 3 4 5 6 7 8 9
2 size[1] = { 10 } // assume uniform overall array dimensions
3

4 * default stride:
5 stride[1] = { 1 }
6 offset[1] = { 0 }
7 for i:
8 result[i]:
9 0 1 2 3 4 5 6 7 8 9

10

11 * reverse stride:
12 stride[1] = { -1 }
13 offset[1] = { 9 }
14 for i:
15 result[i]:
16 9 8 7 6 5 4 3 2 1 0

1.2. NeXus Design 33

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Offset and Stride for 2D Data

1 * raw data = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 size[2] = { 4, 5 } // assume uniform overall array dimensions
3

4 * row major (C) stride:
5 stride[2] = { 5, 1 }
6 offset[2] = { 0, 0 }
7 for i:
8 for j:
9 result[i][j]:

10 0 1 2 3 4
11 5 6 7 8 9
12 10 11 12 13 14
13 15 16 17 18 19
14

15 * column major (Fortran) stride:
16 stride[2] = { 1, 4 }
17 offset[2] = { 0, 0 }
18 for i:
19 for j:
20 result[i][j]:
21 0 4 8 12 16
22 1 5 9 13 17
23 2 6 10 14 18
24 3 7 11 15 19
25

26 * "crazy reverse" row major (C) stride:
27 stride[2] = { -5, -1 }
28 offset[2] = { 4, 5 }
29 for i:
30 for j:
31 result[i][j]:
32 19 18 17 16 15
33 14 13 12 11 10
34 9 8 7 6 5
35 4 3 2 1 0

Offset and Stride for 3D Data

1 * raw data = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
3 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
4 size[3] = { 3, 4, 5 } // assume uniform overall array dimensions
5

6 * row major (C) stride:
7 stride[3] = { 20, 5, 1 }
8 offset[3] = { 0, 0, 0 }
9 for i:

10 for j:
11 for k:
12 result[i][j][k]:
13 0 1 2 3 4
14 5 6 7 8 9
15 10 11 12 13 14
16 15 16 17 18 19

34 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

17

18 20 21 22 23 24
19 25 26 27 28 29
20 30 31 32 33 34
21 35 36 37 38 39
22

23 40 41 42 43 44
24 45 46 47 48 49
25 50 51 52 53 54
26 55 56 57 58 59
27

28 * column major (Fortran) stride:
29 stride[3] = { 1, 3, 12 }
30 offset[3] = { 0, 0, 0 }
31 for i:
32 for j:
33 for k:
34 result[i][j][k]:
35 0 12 24 36 48
36 3 15 27 39 51
37 6 18 30 42 54
38 9 21 33 45 57
39

40 1 13 25 37 49
41 4 16 28 40 52
42 7 19 31 43 55
43 10 22 34 46 58
44

45 2 14 26 38 50
46 5 17 29 41 53
47 8 20 32 44 56
48 11 23 35 47 59

NeXus Data Types

description matching regular expression
integer NX_INT(8|16|32|64)
floating-point NX_FLOAT(32|64)
array (\\[0-9\\])?
valid item name ^[A-Za-z_][A-Za-z0-9_]*$
valid class name ^NX[A-Za-z0-9_]*$

NeXus supports numeric data as either integer or floating-point numbers. A number follows that indicates the number
of bits in the word. The table above shows the regular expressions that matches the data type specifier.

integers NX_INT8, NX_INT16, NX_INT32, or NX_INT64

floating-point numbers NX_FLOAT32 or NX_FLOAT64

date / time stamps NX_DATE_TIME or ISO8601: Dates and times are specified using ISO-8601 standard defini-
tions. Refer to NeXus dates and times.

strings All strings are to be encoded in UTF-8. Since most strings in a NeXus file are restricted to a small set of
characters and the first 128 characters are standard across encodings, the encoding of most of the strings in
a NeXus file will be a moot point. Where encoding in UTF-8 will be important is when recording peoples
names in NXuser and text notes in NXnotes. Because the few places where encoding is important also
have unpredictable content, as well as the way in which current operating systems handle character encoding,

1.2. NeXus Design 35

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

it is practically impossible to test the encoding used. Hence, nxvalidate provides no messages relating to
character encoding.

binary data Binary data is to be written as UINT8.

images Binary image data is to be written using UINT8, the same as binary data, but with an accompanying image
mime-type. If the data is text, the line terminator is [CR][LF].

NeXus dates and times NeXus dates and times should be stored using the ISO 8601 11 format, e.g.
1996-07-31T21:15:22+0600. The standard also allows for time intervals in fractional seconds with 1 or more
digits of precision. This avoids confusion, e.g. between U.S. and European conventions, and is appropriate for machine
sorting.

strftime() format specifiers for ISO-8601 time

%Y-%m-%dT%H:%M:%S%z

Note: Note that the T appears literally in the string, to indicate the beginning of the time element, as specified
in ISO 8601. It is common to use a space in place of the T, such as 1996-07-31 21:15:22+0600. While
human-readable (and later allowed in a relaxed revision of the standard), compatibility with libraries supporting the
ISO 8601 standard is not assured with this substitution. The strftime() format specifier for this is “%Y-%m-%d
%H:%M:%S%z”.

NeXus Data Units

Given the plethora of possible applications of NeXus, it is difficult to define units to use. Therefore, the general rule
is that you are free to store data in any unit you find fit. However, any data field must have a units attribute which
describes the units, Wherever possible, SI units are preferred. NeXus units are written as a string attribute (NX_CHAR)
and describe the engineering units. The string should be appropriate for the value. Values for the NeXus units must
be specified in a format compatible with Unidata UDunits 12 Application definitions may specify units to be used for
fields using an enumeration.

Linking Multi Dimensional Data with Axis Data

NeXus allows to store multi dimensional arrays of data. In most cases it is not sufficient to just have the indices into the
array as a label for the dimensions of the data. Usually the information which physical value corresponds to an index
into a dimension of the multi dimensional data set. To this purpose a means is needed to locate appropriate data arrays
which describe what each dimension of a multi dimensional data set actually corresponds too. There is a standard
HDF facility to do this: it is called dimension scales. Unfortunately, at a time, there was only one global namespace
for dimension scales. Thus NeXus had to come up with its own scheme for locating axis data which is described here.
A side effect of the NeXus scheme is that it is possible to have multiple mappings of a given dimension to physical
data. For example a TOF data set can have the TOF dimension as raw TOF or as energy.

There are two methods of linking each data dimension to its respective dimension scale. The preferred method uses
the axes attribute to specify the names of each dimension scale. The original method uses the axis attribute to
identify with an integer the axis whose value is the number of the dimension. After describing each of these methods,
the two methods will be compared. A prerequisite for both methods is that the data fields describing the axis are stored

11 ISO 8601: http://www.w3.org/TR/NOTE-datetime
12 The UDunits specification also includes instructions for derived units. At present, the contents of NeXus units attributes are not validated in

data files.

36 Chapter 1. NeXus: User Manual

http://www.w3.org/TR/NOTE-datetime
http://www.unidata.ucar.edu/software/udunits/udunits-2.2.14/doc/udunits/udunits2.html#Database
http://www.w3.org/TR/NOTE-datetime

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

together with the multi dimensional data set whose axes need to be defined in the same NeXus group. If this leads to
data duplication, use links.

Linking by name using the axes attribute The preferred method is to define an attribute of the data itself called
axes. The axes attribute contains the names of each dimension scale as a colon (or comma) separated list in the order
they appear in C. For example:

Preferred way of denoting axes

1 data:NXdata
2 time_of_flight = 1500.0 1502.0 1504.0 ...
3 polar_angle = 15.0 15.6 16.2 ...
4 some_other_angle = 0.0 0.0 2.0 ...
5 data = 5 7 14 ...
6 @axes = polar_angle:time_of_flight

7 @signal = 1

Linking by dimension number using the axis attribute The original method is to define an attribute of each
dimension scale called axis. It is an integer whose value is the number of the dimension, in order of fastest varying
dimension. That is, if the array being stored is data with elements data[j][i] in C and data(i,j) in Fortran,
where i is the time-of-flight index and j is the polar angle index, the NXdata group would contain:

Original way of denoting axes

1 data:NXdata
2 time_of_flight = 1500.0 1502.0 1504.0 ...
3 @axis = 1

4 @primary = 1
5 polar_angle = 15.0 15.6 16.2 ...
6 @axis = 2

7 @primary = 1
8 some_other_angle = 0.0 0.0 2.0 ...
9 @axis = 1

10 data = 5 7 14 ...
11 @signal = 1

The axis attribute must be defined for each dimension scale. The primary attribute is unique to this method of
linking.

There are limited circumstances in which more than one dimension scale for the same data dimension can be included
in the same NXdata group. The most common is when the dimension scales are the three components of an (hkl)
scan. In order to handle this case, we have defined another attribute of type integer called primary whose value
determines the order in which the scale is expected to be chosen for plotting, i.e.

• 1st choice: primary=1

• 2nd choice: primary=2

• etc.

If there is more than one scale with the same value of the axis attribute, one of them must have set primary=1.
Defining the primary attribute for the other scales is optional.

1.2. NeXus Design 37

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Note: The primary attribute can only be used with the first method of defining dimension scales
discussed above. In addition to the signal data, this group could contain a data set of the same rank and
dimensions called errors containing the standard deviations of the data.

Discussion of the two linking methods In general the method using the axes attribute on the multi dimensional
data set should be preferred. This leaves the actual axis describing data sets unannotated and allows them to be used
as an axis for other multi dimensional data. This is especially a concern as an axis describing a data set may be linked
into another group where it may describe a completely different dimension of another data set.

Only when alternative axes definitions are needed, the axis method should be used to specify an axis of a data set.
This is shown in the example above for the some_other_angle field where axis=1 denotes another possible
primary axis for plotting. The default axis for plotting carries the primary=1 attribute.

Both methods of linking data axes will be supported in NeXus utilities that identify dimension scales, such as
NXUfindaxis().

Storing Detectors

There are very different types of detectors out there. Storing their data can be a challenge. As a general guide line:
if the detector has some well defined form, this should be reflected in the data file. A linear detector becomes a
linear array, a rectangular detector becomes an array of size xsize times ysize. Some detectors are so irregular
that this does not work. Then the detector data is stored as a linear array, with the index being detector number till
ndet. Such detectors must be accompanied by further arrays of length ndet which give azimuthal_angle,
polar_angle and distance for each detector.

If data from a time of flight (TOF) instrument must be described, then the TOF dimension becomes the last dimension,
for example an area detector of xsize vs. ysize is stored with TOF as an array with dimensions xsize, ysize,
ntof.

Monitors are Special

Monitors, detectors that measure the properties of the experimental probe rather than the sample, have a special
place in NeXus files. Monitors are crucial to normalize data. To emphasize their role, monitors are not stored in
the NXinstrument hierarchy but on NXentry level in their own groups as there might be multiple monitors. Of
special importance is the monitor in a group called control. This is the main monitor against which the data has to
be normalized. This group also contains the counting control information, i.e. counting mode, times, etc.

Monitor data may be multidimensional. Good examples are scan monitors where a monitor value per scan point is
expected or time-of-flight monitors.

Find the plottable data

Any program whose aim is to identify the default plottable data should use the following procedure:

1. Start at the top level of the NeXus data file.

2. Loop through the groups with class NXentry until the next step succeeds.

3. Open the NXentry group and loop through the subgroups with class NXdata until the next step succeeds.

4. Open the NXdata group and loop through the fields for the one field with attribute signal="1". Note: There
should be only one field that matches.

38 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the default plottable data.

(a) If this field has an attribute axes:

i. The axes attribute value contains a colon (or comma) delimited list (in the C-order of the
data array) with the names of the dimension scales associated with the plottable data. Such as:
axes="polar_angle:time_of_flight"

ii. Parse axes and open the datasets to describe your dimension scales

(b) If this field has no attribute axes:

i. Search for datasets with attributes axis=1, axis=2, etc.

ii. These are the fields describing your axis. There may be several fields for any axis, i.e. there may be
multiple fields with the attribute axis=1. Among them the field with the attribute primary=1 is
the preferred one. All others are alternative dimension scales.

5. Having found the default plottable data and its dimension scales: make the plot.

Consult the NeXus API section, which describes the routines available to program these operations. In the course of
time, generic NeXus browsers will provide this functionality automatically.

Physical File format

This section describes how NeXus structures are mapped to features of the underlying physical file format. This is a
guide for people who wish to create NeXus files without using the NeXus-API.

Choice of HDF as Underlying File Format

At its beginnings, the founders of NeXus identified the Hierarchical Data Format (HDF) as a capable and efficient
multi-platform data storage format. HDF was designed for large data sets and already had a substantial user commu-
nity. HDF was developed and maintained initially by the National Center for Supercomputing Applications (NCSA)
at the University of Illinois at Urbana-Champaign (UIUC) and later spun off into its own group called The HDF Group
(THG: http://www.hdfgroup.org/). Rather then developing its own unique physical file format, the NeXus group
choose to build NeXus on top of HDF.

HDF (now HDF5) is provided with software to read and write data (this is the application-programmer interface, or
API) using a large number of computing systems in common use for neutron and X-ray science. HDF is a binary data
file format that supports compression and structured data.

Mapping NeXus into HDF

NeXus data structures map directly to HDF structures. NeXus groups are HDF4 vgroups or HDF5 groups, NeXus
data sets (or fields) are HDF4 SDS (scientific data sets) or HDF5 datasets. Attributes map directly to HDF group or
dataset attributes.

The only special case is the NeXus class name. HDF4 supports a group class which is set with the Vsetclass()
call and read with VGetclass(). HDF-5 has no group class. Thus the NeXus class is stored as an attribute to the
HDF-5 group with the name NX_class and value of the NeXus class name.

A NeXus link directly maps to the HDF linking mechanisms.

Note: Examples are provided in the Examples of writing and reading NeXus data files chapter. These examples
include software to write and read NeXus data files using the NAPI, as well as other software examples that use native
(non-NAPI) libraries. In some cases the examples show the content of the NeXus data files that are produced. Here
are links to some of the examples:

1.2. NeXus Design 39

http://www.hdfgroup.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• How do I write a NeXus file?

• How do I read a NeXus file?

• NAPI Simple 2-D Write Example (C, F77, F90)

• Writing a simple NeXus file using native HDF5 commands in C

• Reading a simple NeXus file using native HDF5 commands in C

• Writing the HDF5 file using h5py

• Reading the HDF5 file using h5py

Perhaps the easiest way to view the implementation of NeXus in HDF5 is to view how the data structures look. For
this, we use the h5dump command-line utility provided with the HDF5 support libraries. Short examples are provided
for the basic NeXus data components:

• group: created in C NAPI by:

NXmakegroup (fileID, "entry", "NXentry");

• field: created in C NAPI by:

NXmakedata (fileID, "two_theta", NX_FLOAT32, 1, &n);
NXopendata (fileID, "two_theta");

NXputdata (fileID, tth);

• attribute: created in C NAPI by:

NXputattr (fileID, "units", "degrees", 7, NX_CHAR);

• link created in C NAPI by:

--tba--
TODO: write some text about HDF5 hard links
until then, see the h5dump example below

See the sections NAPI Simple 2-D Write Example (C, F77, F90) and NAPI Python Simple 3-D Write Example in the
Examples of writing and reading NeXus data files chapter for examples that use the native HDF5 calls to write NeXus
data files.

h5dump of a NeXus NXentry group

1 GROUP "entry" {
2 ATTRIBUTE "NX_class" {
3 DATATYPE H5T_STRING {
4 STRSIZE 7;
5 STRPAD H5T_STR_NULLPAD;
6 CSET H5T_CSET_ASCII;
7 CTYPE H5T_C_S1;
8 }
9 DATASPACE SCALAR

10 DATA {
11 (0): "NXentry"
12 }
13 }
14 # ... group contents
15 }

40 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

h5dump of a NeXus field (HDF5 dataset)

1 DATASET "two_theta" {
2 DATATYPE H5T_IEEE_F64LE
3 DATASPACE SIMPLE { (31) / (31) }
4 DATA {
5 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
6 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
7 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
8 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
9 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,

10 (30): 17.9211
11 }
12 ATTRIBUTE "units" {
13 DATATYPE H5T_STRING {
14 STRSIZE 7;
15 STRPAD H5T_STR_NULLPAD;
16 CSET H5T_CSET_ASCII;
17 CTYPE H5T_C_S1;
18 }
19 DATASPACE SCALAR
20 DATA {
21 (0): "degrees"
22 }
23 }
24 # ... other attributes
25 }

h5dump of a NeXus attribute

1 ATTRIBUTE "axes" {
2 DATATYPE H5T_STRING {
3 STRSIZE 9;
4 STRPAD H5T_STR_NULLPAD;
5 CSET H5T_CSET_ASCII;
6 CTYPE H5T_C_S1;
7 }
8 DATASPACE SCALAR
9 DATA {

10 (0): "two_theta"
11 }
12 }

h5dump of a NeXus link

1 # NeXus links have two parts in HDF5 files.
2

3 # The dataset is created in some group.
4 # A "target" attribute is added to indicate the HDF5 path to this dataset.
5

6 ATTRIBUTE "target" {
7 DATATYPE H5T_STRING {
8 STRSIZE 21;
9 STRPAD H5T_STR_NULLPAD;

1.2. NeXus Design 41

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

10 CSET H5T_CSET_ASCII;
11 CTYPE H5T_C_S1;
12 }
13 DATASPACE SCALAR
14 DATA {
15 (0): "/entry/data/two_theta"
16 }
17 }
18

19 # then, the hard link is created that refers to the original dataset
20 # (Since the name is "two_theta" in this example, it is understood that
21 # this link is created in a different HDF5 group than "/entry/data".)
22

23 DATASET "two_theta" {
24 HARDLINK "/entry/data/two_theta"
25 }

Mapping NeXus into XML

This takes a bit more work than HDF. At the root of NeXus XML file is a XML element with the name NXroot.
Further XML attributes to NXroot define the NeXus file level attributes. An example NeXus XML data file is
provided in the NeXus Introduction chapter as Example A very simple NeXus Data file (in XML).

NeXus groups are encoded into XML as elements with the name of the NeXus class and an XML attribute name
which defines the NeXus name of the group. Further group attributes become XML attributes. An example:

NeXus group element in XML

1 <NXentry name="entry">
2 </NXentry>

NeXus data sets are encoded as XML elements with the name of the data. An attribute NAPItype defines the type
and dimensions of the data. The actual data is stored as PCDATA 13 in the element. Another example:

NeXus data elements

1 <mode NAPItype="NX_CHAR[7]">
2 monitor
3 </mode>
4 <counts NAPItype="NX_INT32[4]">
5 21 456 127876 319
6 </counts>

Data are printed in appropriate formats and in C storage order. The codes understood for NAPItype are all the NeXus
data type names. The dimensions are given in square brackets as a comma separated list. No dimensions need to be
given if the data is just a single value. Data attributes are represented as XML attributes. If the attribute is not a text
string, then the attribute is given in the form: type:value, for example: signal="NX_POSINT:1".

NeXus links are stored in XML as XML elements with the name NAPIlink and a XML attribute target which
stores the path to the linked entity in the file. If the item is linked under a different name, then this name is specified
as a XML attribute name to the element NAPIlink.

13 PCDATA is the XML term for parsed character data (see: http://www.w3schools.com/xml/xml_cdata.asp).

42 Chapter 1. NeXus: User Manual

http://www.w3schools.com/xml/xml_cdata.asp

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The authors of the NeXus API worked with the author of the miniXML XML library to create a reasonably efficient
way of handling numeric data with XML. Using the NeXus API handling something like 400 detectors versus 2000
time channels in XML is not a problem. But you may hit limits with XML as the file format when data becomes to
large or you try to process NeXus XML files with general XML tools. General XML tools are normally ill prepared
to process large amounts of numbers.

Special Attributes

NeXus makes use of some special attributes for its internal purposes. These attributes are stored as normal group or
data set attributes in the respective file format. These are:

target This attribute is automatically created when items get linked. The target attribute contains a text string with
the path to the source of the item linked.

napimount The napimount attribute is used to implement external linking in NeXus. The string is a URL to the
file and group in the external file to link too. The system is meant to be extended. But as of now, the only format
supported is:

nxfile://path-to-file#path-infile

This is a NeXus file in the file system at path-to-file and the group path-infile in that NeXus file.

NAPIlink NeXus supports linking items in another group under another name. This is only supported natively in
HDF-5. For HDF-4 and XML a crutch is needed. This crutch is a special class name or attribute NAPIlink
combined with the target attribute. For groups, NAPILink is the group class, for data items a special attribute
with the name NAPIlink.

1.3 Constructing NeXus Files and Application Definitions

In NeXus Design, we discussed the design of the NeXus format in general terms. In this section a more tutorial style
introduction in how to construct a NeXus file is given. As an example a hypothetical instrument named WONI will be
used.

Note: If you are looking for a tutorial on reading or writing NeXus data files using the NeXus API, consult the NAPI:
NeXus Application Programmer Interface (frozen) chapter. For code examples, refer to Code Examples that use the
NAPI chapter. Alternatively, there are examples in the Example NeXus C programs using native HDF5 commands
chapter of writing and reading NeXus data files using the native HDF5 interfaces in C. Further, there are also some
Python examples using the h5py package in the Python Examples using h5py section.

1.3.1 The WOnderful New Instrument (WONI)

Consider yourself to be responsible for some hypothetical WOnderful New Instrument (WONI). You are tasked to
ensure that WONI will record data according to the NeXus standard. For the sake of simplicity, WONI bears a strong
resemblance to a simple powder diffractometer, but let’s pretend that WONI cannot use any of the existing NXDL
application definitions.

WONI uses collimators and a monochromator to illuminate the sample with neutrons of a selected wavelength as
described in The (fictional) WONI example powder diffractometer. The diffracted beam is collected in a large, banana-
shaped, position sensitive detector. Typical data looks like Example Powder Diffraction Plot from (fictional) WONI at
HYNES. There is a generous background to the data plus quite a number of diffraction peaks.

1.3. Constructing NeXus Files and Application Definitions 43

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 1.7: The (fictional) WONI example powder diffractometer

44 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 1.8: Example Powder Diffraction Plot from (fictional) WONI at HYNES

1.3. Constructing NeXus Files and Application Definitions 45

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1.3.2 Constructing a NeXus file for WONI

The starting point for a NeXus file for WONI will be an empty basic NeXus file hierarchy as documented in the next
figure. In order to arrive at a full NeXus file, the following steps are required:

1. For each instrument component, decide which parameters need to be stored

2. Map the component parameters to NeXus groups and parameters and add the components to the
NXinstrument hierarchy

3. Decide what needs to go into NXdata

4. Fill the NXsample and NXmonitor groups

Basic structure of a NeXus file

1 entry:NXentry
2 NXdata
3 NXinstrument
4 NXmonitor
5 NXsample

Decide which parameters need to be stored

Now the various groups of this empty NeXus file shell need to be filled. The next step is to look at a design drawing of
WONI. Identify all the instrument components like collimators, detectors, monochromators etc. For each component
decide which values need to be stored. As NeXus aims to describe the experiment as good as possible, strive to capture
as much information as practical.

Mapping parameters to NeXus

With the list of parameters to store for each component, consult the reference manual section on the NeXus base
classes. You will find that for each of your instruments components there will be a suitable NeXus base class. Add
this base class together with a name as a group under NXinstrument in your NeXus file hierarchy. Then consult the
possible parameter names in the NeXus base class and match them with the parameters you wish to store for your
instruments components.

As an example, consider the monochromator. You may wish to store: the wavelength, the d-value of the reflection
used, the type of the monochromator and its angle towards the incoming beam. The reference manual tells you that
NXcrystal is the right base class to use. Suitable fields for your parameters can be found in there to. After adding them
to the basic NeXus file, the file looks like in the next figure:

Basic structure of a NeXus file with a monochromator added

1 entry:NXentry
2 NXdata
3 NXinstrument
4 monochromator:Nxcrystal
5 wavelength
6 d_spacing
7 rotation_angle
8 reflection
9 type

46 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

10 NXmonitor
11 NXsample

If a parameter or even a whole group is missing in order to describe your experiment, do not despair! Contact the
NIAC and suggest to add the group or parameter. Give a little documentation what it is for. The NIAC will check that
your suggestion is no duplicate and sufficiently documented and will then proceed to enhance the base classes with
your suggestion.

A more elaborate example of the mapping process is given in the section Creating a NXDL Specification.

Decide on NXdata

The NXdata/ group is supposed to contain the data required to put up a quick plot. For WONI this is a plot of counts
versus two theta (polar_angle in NeXus) as can be seen in Example Powder Diffraction Plot from (fictional) WONI at
HYNES. Now, in NXdata, create links to the appropriate data items in the NXinstrument hierarchy. In the case of
WONI, both parameters live in the detector:NXdetector group.

Fill in auxiliary Information

Look at the section on NXsample in the NeXus reference manual. Choose appropriate parameters to store for your
samples. Probably at least the name will be needed.

In order to normalize various experimental runs against each other it is necessary to know about the counting conditions
and especially the monitor counts of the monitor used for normalization. The NeXus convention is to store such
information in a control:NXmonitor group at NXentry level. Consult the reference for NXmonitor for field
names. If additional monitors exist within your experiment, they will be stored as additional NXmonitor groups at
entry level.

Consult the documentation for NXentry in order to find out under which names to store information such as titles,
user names, experiment times etc.

A more elaborate example of this process can be found in the following section on creating an application definition.

1.3.3 Creating a NXDL Specification

An NXDL specification for a NeXus file is required if you desire to standardize NeXus files from various sources.
Another name for a NXDL description is application definition. A NXDL specification can be used to verify NeXus
files to conform to the standard encapsulated in the application definition. The process for constructing a NXDL
specification is similar to the one described above for the construction of NeXus files.

One easy way to describe how to store data in the NeXus class structure and to create a NXDL specification is to
work through an example. Along the way, we will describe some key decisions that influence our particular choices
of metadata selection and data organization. So, on with the example ...

Application Definition Steps

With all this introductory stuff out of the way, let us look at the process required to define an application definition:

1. Think! hard about what has to go into the data file.

2. Map the required fields into the NeXus hierarchy

3. Describe this map in a NXDL file

4. Standardize your definition through communication with the NIAC

1.3. Constructing NeXus Files and Application Definitions 47

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Step 1: Think! hard about data

This is actually the hard bit. There are two things to consider:

1. What has to go into the data file?

2. What is the normal plot for this type of data?

For the first part, one of the NeXus guiding principles gives us - Guidance! “A NeXus file must contain all the data
necessary for standard data analysis.”

Not more and not less for an application definition. Of course the definition of standard data for analysis or a standard
plot depends on the science and the type of data being described. Consult senior scientists in the field about this is
if you are unsure. Perhaps you must call an international meeting with domain experts to haggle that out. When
considering this, people tend to put in everything which might come up. This is not the way to go.

A key test question is: Is this data item necessary for common data analysis? Only these necessary data items belong
in an application definition.

The purpose of an application definition is that an author of upstream software who consumes the file can expect
certain data items to be there at well defined places. On the other hand if there is a development in your field which
analyzes data in a novel way and requires more data to do it, then it is better to err towards the side of more data.

Now for the case of WONI, the standard data analysis is either Rietveld refinement or profile analysis. For both
purposes, the kind of radiation used to probe the sample (for WONI, neutrons), the wavelength of the radiation, the
monitor (which tells us how long we counted) used to normalize the data, the counts and the two theta angle of each
detector element are all required. Usually, it is desirable to know what is being analyzed, so some metadata would
be nice: a title, the sample name and the sample temperature. The data typically being plotted is two theta against
counts, as shown in Example Powder Diffraction Plot from (fictional) WONI at HYNES above. Summarizing, the basic
information required from WONI is given next.

• title of measurement

• sample name

• sample temperature

• counts from the incident beam monitor

• type of radiation probe

• wavelength (λ) of radiation incident on sample

• angle (2θ or two theta) of detector elements

• counts for each detector element

If you start to worry that this is too little information, hold on, the section on Using an Application Definition (Using
an Application Definition) will reveal the secret how to go from an application definition to a practical file.

Step 2: Map Data into the NeXus Hierarchy

This step is actually easier then the first one. We need to map the data items which were collected in Step 1 into the
NeXus hierarchy. A NeXus file hierarchy starts with an NXentry group. At this stage it is advisable to pull up the
base class definition for NXentry and study it. The first thing you might notice is that NXentry contains a field
named title. Reading the documentation, you quickly realize that this is a good place to store our title. So the first
mapping has been found.

title = /NXentry/title

48 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Note: In this example, the mapping descriptions just contain the path strings into the NeXus file hierarchy with the
class names of the groups to use. As it turns out, this is the syntax used in NXDL link specifications. How convenient!

Another thing to notice in the NXentry base class is the existence of a group of class NXsample. This looks like a
great place to store information about the sample. Studying the NXsample base class confirms this view and there
are two new mappings:

1 sample name = /NXentry/NXsample/name
2 sample temperature = /NXentry/NXsample/temperature

Scanning the NXentry base class further reveals there can be a NXmonitor group at this level. Looking up the base
class for NXmonitor reveals that this is the place to store our monitor information.

monitor = /NXentry/NXmonitor/data

For the other data items, there seem to be no solutions in NXentry. But each of these data items describe the
instrument in more detail. NeXus stores instrument descriptions in the /NXentry/NXinstrument branch of the
hierarchy. Thus, we continue by looking at the definition of the NXinstrument base class. In there we find further
groups for all possible instrument components. Looking at the schematic of WONI (The (fictional) WONI example
powder diffractometer), we realize that there is a source, a monochromator and a detector. Suitable groups can be
found for these components in NXinstrument and further inspection of the appropriate base classes reveals the
following further mappings:

1 probe = /NXentry/NXinstrument/NXsource/probe
2 wavelength = /NXentry/NXinstrument/NXcrystal/wavelength
3 two theta of detector elements = /NXentry/NXinstrument/NXdetector/polar angle
4 counts for each detector element = /NXentry/NXinstrument/NXdetector/data

Thus we mapped all our data items into the NeXus hierarchy! What still needs to be done is to decide upon the content
of the NXdata group in NXentry. This group describes the data necessary to make a quick plot of the data. For
WONI this is counts versus two theta. Thus we add this mapping:

1 two theta of detector elements = /NXentry/NXdata/polar angle
2 counts for each detector element = /NXentry/NXdata/data

The full mapping of WONI data into NeXus is documented in the next table:

WONI data NeXus path
title of measurement /NXentry/title
sample name /NXentry/NXsample/name
sample temperature /NXentry/NXsample/temperature
monitor /NXentry/NXmonitor/data
type of radiation probe /NXentry/MXinstrument/NXsource/probe
wavelength of radiation incident on sample /NXentry/MXinstrument/NXcrystal/wavelength
two theta of detector elements /NXentry/NXinstrument/NXdetector/polar_angle
counts for each detector element /NXentry/NXinstrument/NXdetector/data
two theta of detector elements /NXentry/NXdata/polar_angle
counts for each detector element /NXentry/NXdata/data

Looking at this table, one might get concerned that the two theta and counts data is stored in two places and thus
duplicated. Stop worrying, this problem is solved at the NeXus API level. Typically NXdata will only hold links to
the corresponding data items in /NXentry/NXinstrument/NXdetector.

In this step problems might occur. The first is that the base class definitions contain a bewildering number of parame-
ters. This is on purpose: the base classes serve as dictionaries which define names for everything which possibly can
occur. You do not have to give all that information. The key question is, as already said, What is required for typical

1.3. Constructing NeXus Files and Application Definitions 49

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

data analysis for this type of application? You might also be unsure how to correctly store a particular data item. In
such a case, contact the NIAC for help. Another problem which can occur is that you require to store information for
which there is no name in one of the existing base classes or you have a new instrument component for which there is
no base class alltogether. In such a case, please feel free to contact the NIAC with a suggestion for an extension of the
base classes in question.

Step 3: Describe this map in a NXDL file

This is even easier. Some XML editing is necessary. Fire up your XML editor of choice and open a file. If your XML
editor supports XML schema while editing XML, it is worth to load nxdl.xsd. Now your XML editor can help you
to create a proper NXDL file. As always, the start is an empty template file. This looks like the XML code below.

Note: This is just the basic XML for a NXDL definition. It is advisable to change some of the documentation strings.

NXDL template file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!--
3 # NeXus - Neutron and X-ray Common Data Format
4 #
5 # Copyright (C) 2008-2012 NeXus International Advisory Committee (NIAC)
6 #
7 # This library is free software; you can redistribute it and/or
8 # modify it under the terms of the GNU Lesser General Public
9 # License as published by the Free Software Foundation; either

10 # version 3 of the License, or (at your option) any later version.
11 #
12 # This library is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 # Lesser General Public License for more details.
16 #
17 # You should have received a copy of the GNU Lesser General Public
18 # License along with this library; if not, write to the Free Software
19 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #
21 # For further information, see http://www.nexusformat.org
22 -->
23 <definition name="NX__template__" extends="NXobject" type="group"
24 category="application"
25 xmlns="http://definition.nexusformat.org/nxdl/3.1"
26 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
27 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/3.1 ../nxdl.xsd"
28 version="1.0b"
29 >
30 <doc>template for a NXDL application definition</doc>
31 </definition>

For example, copy and rename the file to NXwoni.nxdl.xml. Then, locate the XML root element definition
and change the name attribute (the XML shorthand for this attribute is /definition/@name) to NXwoni.
Change the doc as well. Also consider keeping track of /definition/@version as suits your development of
this NXDL file.

The next thing which needs to be done is adding groups into the definition. A group is defined by some XML, as in
this example:

50 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 <group type="NXdata">
2

3 </group>

The type is the actual NeXus base class this group belongs to. Optionally a name attribute may be given (default is
data).

Next, one needs to include data items too. The XML for such a data item looks similar to this:

<field name="polar_angle" type="NX_FLOAT units="NX_ANGLE">
<doc>Link to polar angle in /NXentry/NXinstrument/NXdetector</doc>
<dimensions rank="1">
<dim index="1" value="ndet"/>

</dimensions>
</field>

The meaning of the name attribute is intuitive, the type can be looked up in the relevant base class definition.
A field definition can optionally contain a doc element which contains a description of the data item. The
dimensions entry specifies the dimensions of the data set. The size attribute in the dimensions tag sets the
rank of the data, in this example: rank="1". In the dimensions group there must be rank dim fields. Each dim
tag holds two attributes: index determines to which dimension this tag belongs, the 1 means the first dimension.
The value attribute then describes the size of the dimension. These can be plain integers, variables, such as in the
example ndet or even expressions like tof+1.

Thus a NXDL file can be constructed. The full NXDL file for the WONI example is given in Full listing of the WONI
Application Definition. Clever readers may have noticed the strong similarity between our working example NXwoni
and NXmonopd since they are essentially identical. Give yourselves a cookie if you spotted this.

Step 4: Standardize with the NIAC

Basically you are done. Your first application definition for NeXus is constructed. In order to make your work a
standard for that particular application type, some more steps are required:

• Send your application definition to the NIAC for review

• Correct your definition per the comments of the NIAC

• Cure and use the definition for a year

• After a final review, it becomes the standard

The NIAC must review an application definition before it is accepted as a standard. The one year curation period is
in place in order to gain practical experience with the definition and to sort out bugs from Step 1. In this period, data
shall be written and analyzed using the new application definition.

Full listing of the WONI Application Definition

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="nxdlformat.xsl" ?>
3 <!--
4 # NeXus - Neutron and X-ray Common Data Format
5 #
6 # Copyright (C) 2008-2012 NeXus International Advisory Committee (NIAC)
7 #
8 # This library is free software; you can redistribute it and/or
9 # modify it under the terms of the GNU Lesser General Public

10 # License as published by the Free Software Foundation; either
11 # version 3 of the License, or (at your option) any later version.

1.3. Constructing NeXus Files and Application Definitions 51

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

12 #
13 # This library is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 # Lesser General Public License for more details.
17 #
18 # You should have received a copy of the GNU Lesser General Public
19 # License along with this library; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #
22 # For further information, see http://www.nexusformat.org
23 -->
24 <definition name="NXmonopd" extends="NXobject" type="group"
25 category="application"
26 xmlns="http://definition.nexusformat.org/nxdl/@NXDL_RELEASE@"
27 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
28 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/@NXDL_RELEASE@ ../nxdl.xsd"
29 version="1.0b"
30 >
31 <doc>
32 Monochromatic Neutron and X-Ray Powder Diffraction. Instrument
33 definition for a powder diffractometer at a monochromatic neutron
34 or X-ray beam. This is both suited for a powder diffractometer
35 with a single detector or a powder diffractometer with a position
36 sensitive detector.
37 </doc>
38 <group type="NXentry" name="entry">
39 <field name="title"/>
40 <field name="start_time" type="NX_DATE_TIME"/>
41 <field name="definition">
42 <doc> Official NeXus NXDL schema to which this file conforms </doc>
43 <enumeration>
44 <item value="NXmonopd"/>
45 </enumeration>
46 </field>
47 <group type="NXinstrument">
48 <group type="NXsource">
49 <field name="type"/>
50 <field name="name"/>
51 <field name="probe">
52 <enumeration>
53 <item value="neutron"/>
54 <item value="x-ray"/>
55 <item value="electron"/>
56 </enumeration>
57 </field>
58 </group>
59 <group type="NXcrystal">
60 <field name="wavelength" type="NX_FLOAT" units="NX_WAVELENGTH">
61 <doc>Optimum diffracted wavelength</doc>
62 <dimensions rank="1">
63 <dim index="1" value="i"/>
64 </dimensions>
65 </field>
66 </group>
67 <group type="NXdetector">
68 <field name="polar_angle" type="NX_FLOAT" axis="1">
69 <doc>where ndet = number of detectors</doc>

52 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

70 <dimensions rank="1">
71 <dim index="1" value="ndet" />
72 </dimensions>
73 </field>
74 <field name="data" type="NX_INT" signal="1">
75 <doc>
76 detector signal (usually counts) are already
77 corrected for detector efficiency
78 </doc>
79 <dimensions rank="1">
80 <dim index="1" value="ndet" />
81 </dimensions>
82 </field>
83 </group>
84 </group>
85 <group type="NXsample">
86 <field name="name">
87 <doc>Descriptive name of sample</doc>
88 </field>
89 <field name="rotation_angle" type="NX_FLOAT" units="NX_ANGLE">
90 <doc>
91 Optional rotation angle for the case when the powder diagram
92 has been obtained through an omega-2theta scan like from a
93 traditional single detector powder diffractometer
94 </doc>
95 </field>
96 </group>
97 <group type="NXmonitor">
98 <field name="mode">
99 <doc>

100 Count to a preset value based on either clock time (timer)
101 or received monitor counts (monitor).
102 </doc>
103 <enumeration>
104 <item value="monitor"/>
105 <item value="timer"/>
106 </enumeration>
107 </field>
108 <field name="preset" type="NX_FLOAT">
109 <doc>preset value for time or monitor</doc>
110 </field>
111 <field name="integral" type="NX_FLOAT" units="NX_ANY">
112 <doc>Total integral monitor counts</doc>
113 </field>
114 </group>
115 <group type="NXdata">
116 <link name="polar_angle" target="/NXentry/NXinstrument/NXdetector/polar_angle">
117 <doc>Link to polar angle in /NXentry/NXinstrument/NXdetector</doc>
118 </link>
119 <link name="data" target="/NXentry/NXinstrument/NXdetector/data">
120 <doc>Link to data in /NXentry/NXinstrument/NXdetector</doc>
121 </link>
122 </group>
123 </group>
124 </definition>

1.3. Constructing NeXus Files and Application Definitions 53

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Using an Application Definition

The application definition is like an interface for your data file. In practice files will contain far more information. For
this, the extendable capability of NeXus comes in handy. More data can be added, and upstream software relying on
the interface defined by the application definition can still retrieve the necessary information without any changes to
their code.

NeXus application definitions only standardize classes. You are free to decide upon names of groups, subject to them
matching regular expression for NeXus name attributes (see the regular expression pattern for NXDL group and field
names in the Naming Conventions section). Note the length limit of 63 characters imposed by HDF5. Please use
sensible, descriptive names and separate multi worded names with underscores.

Something most people wish to add is more metadata, for example in order to index files into a database of some sort.
Go ahead, do so, if applicable, scan the NeXus base classes for standardized names. For metadata, consider to use
the NXarchive definition. In this context, it is worth to mention that a practical NeXus file might adhere to more
then one application definition. For example, WONI data files may adhere to both the NXmonopd and NXarchive
definitions. The first for data analysis, the second for indexing into the database.

Often, instrument scientists want to store the complete state of their instrument in data files in order to be able to find
out what went wrong if the data is unsatisfactory. Go ahead, do so, please use names from the NeXus base classes.

Site policy might require you to store the names of all your bosses up to the current head of state in data files. Go
ahead, add as many NXuser classes as required to store that information. Knock yourselves silly over this.

Your Scientific Accounting Department (SAD) may ask of you the preposterous; to store billing information into data
files. Go ahead, do so if your judgment allows. Just do not expect the NIAC to provide base classes for this and do not
use the prefix NX for your classes.

In most cases, NeXus files will just have one NXentry class group. But it may be required to store multiple related
data sets of the results of data analysis into the same data file. In this case create more entries. Each entry should
be interpretable standalone, i.e. contain all the information of a complete NXentry class. Please keep in mind that
groups or data items which stay constant across entries can always be linked in.

1.3.4 Processed Data

Data reduction and analysis programs are encouraged to store their results in NeXus data files. As far as the necessary,
the normal NeXus hierarchy is to be implemented. In addition, processed data files must contain a NXprocess group.
This group, that documents and preserves data provenance, contains the name of the data processing program and the
parameters used to run this program in order to achieve the results stored in this entry. Multiple processing steps must
have a separate entry each.

1.4 Strategies for storing information in NeXus data files

NeXus may appear daunting, at first, to use. The number of base classes is quite large as well as is the number of
application definitions. This chapter describes some of the strategies that have been recommended for how to store
information in NeXus data files.

When we use the term storing, some might be helped if they consider this as descriptions for how to classify their data.

It is intended for this chapter to grow, with the addition of different use cases as they are presented for suggestions.

1.4.1 Strategies: The simplest case(s)

Perhaps the simplest case might be either a step scan with two or more columns of data. Another simple case might be
a single image acquired by an area detector. In either of these hypothetical cases, the situation is so simple that there

54 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

is little addition information available to be described (for whatever reason).

Step scan with two or more data columns

Consider the case where we wish to store the data from a step scan. This case may involve two or more related 1-D
arrays of data to be saved, each having the same length. For our hypothetical case, we’lll have these positioners as
arrays:

positioner arrays detector arrays
ar, ay, dy I0, I00, time, Epoch, photodiode

1.4.2 Strategies: The wavelength

Where should the wavelength of my experiment be written? This is one of the Frequently Asked Questions. The
canonical location to store wavelength has been:

/NXentry/NXinstrument/NXcrystal/wavelength

More recently, this location makes more sense to many:

/NXentry/NXinstrument/NXmonochromator/wavelength

NXcrystal describes a crystal monochromator or analyzer. Recently, scientists with monochromatic radiation not
defined by a crystal, such as from an electron-beam undulator or a neutron helical velocity selector, were not satisfied
with creating a fictitious instance of a crystal just to preserve the wavelength from their instrument. Thus, the addition
of the NXmonochromator base class to NeXus, which also allows “energy” to be specified if one is so inclined.

Note: See the Class path specification section for a short discussion of the difference between the HDF5 path and the
NeXus symbolic class path.

1.4.3 Strategies: The next case

The NIAC: The NeXus International Advisory Committee welcomes suggestions for additional sections in this chapter.

1.5 Verification and validation of files

The intent of verification and validation of files is to ensure, in an unbiased way, that a given file conforms to the
relevant specifications. NeXus uses various automated tools to validate files. These tools include conversion of
content from HDF to XML and transformation (via XSLT) from XML format to another such as NXDL, XSD, and
Schematron. This chapter will first provide an overview of the process, then define the terms used in validation, then
describe how multiple base classes or application definitions might apply to a given NeXus data file, and then describe
the various validation techniques in more detail. Validation does not check that the data content of the file is sensible;
this requires scientific interpretation based on the technique.

Validation is useful to anyone who manipulates or modifies the contents of NeXus files. This includes scientists/users,
instrument staff, software developers, and those who might mine the files for metadata. First, the scientist or user
of the data must be certain that the information in a file can be located reliably. The instrument staff or software
developer must be confident the information they have written to the file has been located and formatted properly. At
some time, the content of the NeXus file may contribute to a larger body of work such as a metadata catalog for a
scientific instrument, a laboratory, or even an entire user facility.

1.5. Verification and validation of files 55

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1.5.1 Overview

NeXus files adhere to a set of rules and can be tested against these rules for compliance. The rules are implemented us-
ing standard tools and can themselves be tested to verify compliance with the standards for such definitions. Validation
includes the testing of both NeXus data files and the NXDL specifications that describe the rules.

The rules for writing NeXus data files are different than the rules for writing NeXus class definitions. To validate a
NeXus data file, these two rule sets must eventually merge, as shown in the next figure. The data file (either HDF4,
HDF5, or XML) is first converted into an internal format to facilitate validation, including data types, array dimensions,
naming, and other items. Most of the data is not converted since data validation is non-trivial. Also note that the units
are not validated. All the NXDL files are converted into a single Schematron file (again, internal use for validation)
only when NXDL revisions are checked into the NeXus definitions repository as NXDL changes are not so frequent.

Figure 1.9: Flowchart of the NeXus validation process.

NeXus data files NeXus data files (also known as NeXus data file instances) are validated to ensure the various parts
of the data file are arranged according to the governing NXDL specifications used in that file instance.

Note: Since NeXus has several rules that are quite difficult to apply in either XSD or Schematron,
direct validation of data files using standard tools is not possible. To validate NeXus data files, it is
necessary to use nxvalidate.

NeXus Definition Language (NXDL) specification files NXDL files are validated to ensure they adhere to the rules
for writing NeXus base classes and application definitions.

1.5.2 Definitions of these terms

Let’s be clear about some terms used in this section.

HDF Hierarchical Data Format from The HDF Group. NeXus data files using HDF may be stored in
either version 4 (HDF4) or version 5 (HDF5). New NeXus HDF files should only use HDF5. The
preferred file extensions (but not required) include .hdf, .h5, .nxs, and .nx5.

NXDL NeXus Definition Language files define the specifications for NeXus base classes, application
definitions, and contributed classes and definitions. It is fully described in the NXDL chapter.

Schematron Schematron 14 is an alternative to XSD and is used to validate the content and structure of
an XML file. NeXus uses Schematron internally to validate data files.

14 http://www.schematron.com

56 Chapter 1. NeXus: User Manual

http://www.schematron.com

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Validation File validation is the comparison of file contents, in an unbiased way, with the set of rules that
define the structure of such files.

XML The eXtensible Markup Language (XML) 15 is a standard business tool for the exchange of infor-
mation. It is broadly supported by a large software library in many languages. NeXus uses XML for
several purposes: data files, NXDL definitions, rules, and XSLT transformations.

XSD XML files are often defined by a set of rules (or schema). A common language used to implement
these rules is XML Schema (XSD) 16 Fundamentally, all XML, XSD, XSLT, and Schematron files
are XML.

XSLT XML files can be flexible enough to convert from one set of rules to another. An example is when
one company wishes to exchange catalog or production information with another. The XML StyL-
sheet Transformation (XSLT) 17 language is often used to describe each direction of the conversion
of the XML files between the two rule sets.

1.5.3 NeXus data files may use multiple base classes or application definitions

NeXus data files may have more than one data set or may have multiple instances of just about any base class or even
application definitions. The NeXus data file validation is prepared to handle this without any special effort by the
provider of the data file.

1.5.4 Validation techniques

File validation is the process to determine if a given file is prepared consistent with a set of guidelines or rules. In
NeXus, there are several different types of files. First, of course, is the data file yet it can be provided in one of several
forms: HDF4, HDF5, or XML. Specifications for data files are provided by one or (usually) more NeXus definition
files (NXDL, for short). These NXDL files are written in XML and validated by the NXDL specification which is
written in the XML Schema (XSD) language. Thus, automated file verification is available for data files, definition
files, and the rules for definition files.

Validation of NeXus data files

Each NeXus data file can be validated against the NXDL rules. (The full suite of NXDL specifications is converted
into Schematron rules by an XSLT transformation and then combined into a single file. It is not allowed to have a
NeXus base class and also an application definition with the same name since one will override the other in the master
Schematron file) The validation is done using Schematron and the NXvalidate program. Schematron was selected,
rather than XML Schema (XSD), to permit established rules for NeXus files, especially the rule allowing the nodes
within NXentry to appear in any order.

The validation process is mainly checking file structure (presence or absence of groups/fields) - it is usually impossible
to check the actual data itself, other than confirm that it is of the correct data type (string, float etc.). The only exception
is when the NXDL specification is either a fixed value or an enumeration - in which case the data is checked.

During validation, the NeXus data file instance (either HDF or XML) is first converted into an XML file in a form that
facilitates validation (e.g with large numeric data removed). Then the XML file is validated by Schematron against the
schema/all.sch file.

15 http://www.w3schools.com/xml
16 http://www.w3schools.com/schema
17 http://www.w3schools.com/xsl/

1.5. Verification and validation of files 57

http://www.w3schools.com/xml
http://www.w3schools.com/schema
http://www.w3schools.com/xsl/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Validation of NeXus Definition Language (NXDL) specification files

Each NXDL file must be validated against the rules that define how NXDL files are to be arranged. The NXDL rules
are specified in the form of XML Schema (XSD).

Standard tools (validating editor or command line or support library) can be used to validate any NXDL
file. Here’s an example using xmllint from a directory that contains nxdl.xsd, nxdlTypes.xsd, and
applications/NXsas.nxdl.xml:

Use of xmllint to validate a NXDL specification.

xmllint --noout --schema nxdl.xsd applications/NXsas.nxdl.xml

Validation of the NXDL rules

NXDL rules are specified using the rules of XML Schema (XSD). The XSD syntax of the rules is validated using stan-
dard XML file validation tools: either a validating editor (such as oXygen, xmlSpy, or eclipse) or common UNIX/Linux
command line tools

Use of xmllint to validate the NXDL rules.

xmllint --valid nxdl.xsd

The validating editor method is used by the developers while the xmllint command line tool is the automated
method used by the NeXus definitions subversion repository.

Validation of XSLT files

XSLT transformations are validated using standard tools such as a validating editor or xmllint.

Transformation of NXDL files to Schematron

Schematron 1 is a rule-based language that allows very specific validation of an XML document. Its advantages over
using XSD schema are that:

• more specific pattern-based rules based on data content can be written

• full XSLT/XPath expression syntax available for writing validation tests

• error messages can be customised and thus more meaningful

• It is easier to validate documents when entities can occur in any order.

XSD does provide a mechanism for defining a class structure and inheritance, so its usage within NeXus in addition
to schematron has not been ruled out. But for a basic validation of file content, schematron looks best.

The NXDL definition files are converted into a set of Schematron rules using the xslt/nxdl2sch.xsl XSLT
stylesheet. The NeXus instance file (either in XML, HDF4, or HDF5) is turned into a reduced XML validation file.
This file is very similar to a pure NeXus XML file, but with additional metadata for dimensions and also with most of
the actual numeric data removed.

The validation process then compares the set of Schematron rules against the reduced XML validation file. Schematron
itself is implemented as a set of XSLT transforms. NeXus includes the Schematron files, as well as the Java based
XSLT engine saxon.

58 Chapter 1. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The java based nxvalidate GUI can be run to validate files.

Currently, the structure of the file is validated (i.e. valid names are used at the correct points), but this will be extended
to array dimensions and link targets. Error messages are printed about missing mandatory fields, and informational
messages are printed about fields that are neither optional or mandatory (in case they are a typing error). Even non-
standard names must comply with a set of rules (e.g. no spaces are allowed in names). Enumerations are checked that
they conform to an allowed value. The data type is checked and the units will also be checked.

1.6 Frequently Asked Questions

This is a list of commonly asked questions concerning the NeXus data format.

1. Is it Nexus, NeXus or NeXuS?

NeXus is correct. It is a format for data from Neutron and X-ray facilities, hence those first letters
are capitalised. The format is also used for muon experiments, but there is no mu (or m) in NeXus
and no s in muon. So the s stays in lower case.

2. How many facilities use NeXus?

This is not easy to say, not all facilities using NeXus actively participate in the committee. Some
facilities have reported their adoption status on the Facilities Wiki page. Please have a look at this
list. Keep in mind that it is not complete.

3. NeXus files are binary? This is crazy! How am I supposed to see my data?

NeXus files are not per se binary. If you use the XML backend the data are stored in a relatively
human readable form (see this example). This backend however is only recommended for very small
data sets. With the multidimensional data that is routinely recorded on many modern instruments it
is very difficult anyway to retrieve useful information on a VT100 terminal. If you want to try, for
example nxbrowse is a utility provided by the NeXus community that can be very helpful to those
who want to inspect their files and avoid graphical applications. For larger data volumes the binary
backends used with the appropriate tools are by far superior in terms of efficiency and speed and most
users happily accept that after having worked with supersized “human readable” files for a while.

4. What on-disk file format should I choose for my data?

HDF5 is the default file container to use for NeXus data. It is the recommended format for all appli-
cations. HDF4 is still supported as a on disk format for NeXus but for new installations preference
should be given to HDF5. The XML backend is available for special use cases. Choose this option
with care considering the space and speed implications.

5. Why are the NeXus classes so complicated? I’ll never store all that information

The NeXus classes are essentially glossaries of terms. If you need to store a piece of information,
consult the class definitions to see if it has been defined. If so, use it. It is not compulsory to include
every item that has been defined in the base class if it is not relevant to your experiment. On the other
hand, a NeXus application definition lists a smaller set of compulsory items that should allow other
researchers or software to analyze your data. You should really follow the application definition that
corresponds to your experiment to take full advantage of NeXus.

6. I don’t like NeXus. It seems much faster and simpler to develop my own file format. Why should I even consider
NeXus?

If you consider using an efficient on disk storage format, HDF5 is a better choice than most others.
It is fast and efficient and well supported in all mainstream programming languages and a fair share
of popular analysis packages. The format is so widely used and backed by a big organisation that it
will continue to be supported for the foreseeable future. So if you are going to use HDF5 anyway,
why not use the NeXus definition to lay out the data in a standardised way? The NeXus community

1.6. Frequently Asked Questions 59

http://wiki.nexusformat.org/Facilities
http://trac.nexusformat.org/definitions/browser/exampledata/code/xml/NXtest.xml.txt

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

spent years trying to get the standard right and while you will not agree with every single choice they
made in the past, you should be able to store the data you have in a quite reasonable way. If you
do not comply with NeXus, chances are most people will perceive your format as different but not
necessarily better than NeXus by any large measure. So it may not be worth the effort. Seriously.

If you encounter any problems because the classes are not sufficient to describe your configuration,
please contact the NIAC Executive Secretary explaining the problem, and post a suggestion at the
relevant class wiki page. Or raise the problem in one of the mailing lists. The NIAC is always willing
to consider new proposals.

7. I want to contribute an application definition. How do I go about it?

Read the NXDL Tutorial in Creating a NXDL Specification and have a try. You can ask for help on the
mailing lists. Once you have a definition that is working well for at least your case, you can submit it to the
NIAC for acceptance as a standard. The procedures for acceptance are defined in the NIAC constitution.
18

8. What is the purpose of NXdata?

NXdata contains links to the data stored elsewhere in the NXentry. It identifies the default plot-
table data. This is one of the basic motivations (see Simple plotting) for the NeXus standard. The
choice of the name NXdata is historic and does not really reflect its function.

9. How do I identify the plottable data?

See the section: Find the plottable data.

10. How can I specify reasonable axes for my data?

See the section: Linking Multi Dimensional Data with Axis Data.

11. Why aren’t NXsample and NXmonitor groups stored in the NXinstrument group?

A NeXus file can contain a number of NXentry groups, which may represent different scans in
an experiment, or sample and calibration runs, etc. In many cases, though by no means all, the
instrument has the same configuration so that it would be possible to save space by storing the
NXinstrument group once and using multiple links in the remaining NXentry groups. It is
assumed that the sample and monitor information would be more likely to change from run to run,
and so should be stored at the top level.

12. Specifications are complicated and often provide too much information for what I need. Where can I find some
good example data files?

There are a few checked into the definitions repository. At the moment the selection is quite limited
and not very representative. This repository will be edited as more example files become available.

13. Can I use a NXDL specification to parse a NeXus data file?

This should be possible as there is nothing in the NeXus specifications to prevent this but it is not
implemented in NAPI. You would need to implement it for yourself.

14. Why do I need to specify the NAPItype? My programming language does not need that information and I
don’t care about C and colleagues. Can I leave it out?

NAPItype is necessary. When implementing the NeXus-XML API we strived to make this as
general as HDF and reasonably efficient for medium sized datasets. This is why we store arrays as a
large bunch of numbers in C-storage order. And we need the NAPItype to figure out the dimensions
of the dataset.

15. Do I have to use the NAPI subroutines? Can’t I read (or write) the NeXus data files with my own routines?

18 Refer to the most recent version of the NIAC constitution on the NIAC wiki: http://wiki.nexusformat.org/NIAC#Constitution

60 Chapter 1. NeXus: User Manual

http://download.nexusformat.org/doc/html/MailingLists.html
http://download.nexusformat.org/doc/html/MailingLists.html
http://trac.nexusformat.org/definitions/browser/exampledata
http://wiki.nexusformat.org/NIAC#Constitution

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

You are not required to use the NAPI to write valid NeXus data files. It is possible to avoid the NAPI
to write and read valid NeXus data files. But, the programmer who chooses this path must have more
understanding of how the NeXus HDF or XML data file is written. Validation of data files written
without the NAPI is strongly encouraged.

16. I’m using links to place data in two places. Which one should be the data and which one is the link?

Note: NeXus uses HDF5 hard links

In HDF, a hard link points to a data object. A soft link points to a directory entry. Since NeXus uses
hard links, there is no need to distinguish between two (or more) directory entries that point to the
same data.

Both places have pointers to the actual data. That is the way hard links work in HDF5. There is no
need for a preference to either location. NeXus defines a target attribute to label one directory
entry as the source of the data (in this, the link target). This has value in only a few situations such as
when converting the data from one format to another. By identifying the original in place, duplicate
copies of the data are not converted.

17. If I write my data according to the current specification for NXsas (substitute any other application defini-
tion), will other software be able to read my data?

Yes. NXsas, like other Application Definitions, defines and names the minimum information required for
analysis or data processing. As long as all the information required by the specification is present, analysis
software should be able to process the data. If other information is also present, there is no guarantee that
small-angle scattering analysis software will notice.

18. Where do I store the wavelength of my experiment?

See the Strategies: The wavelength section.

19. Where do I store metadata about my experiment?

See the Where to Store Metadata section.

1.6. Frequently Asked Questions 61

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

62 Chapter 1. NeXus: User Manual

CHAPTER

TWO

EXAMPLES OF WRITING AND
READING NEXUS DATA FILES

Simple examples of reading and writing NeXus data files are provided in the NeXus Introduction chapter and also in
the NAPI: NeXus Application Programmer Interface (frozen) chapter. Here, three examples are provided showing how
to write a NeXus data file without using the NAPI.

2.1 Code Examples that use the NAPI

Various examples are given that show how to read and write NeXus data files using the NAPI: NeXus Application
Programmer Interface (frozen).

2.1.1 Example NeXus programs using NAPI

NAPI Simple 2-D Write Example (C, F77, F90)

Code examples are provided in this section that write 2-D data to a NeXus HDF5 file in C, F77, and F90 languages
using the NAPI.

The following code reads a two-dimensional set counts with dimension scales of t and phi using local routines,
and then writes a NeXus file containing a single NXentry group and a single NXdata group. This is the simplest
data file that conforms to the NeXus standard. The same code is provided in C, F77, and F90 versions. Compare these
code examples with Example NeXus C programs using native HDF5 commands.

NAPI C Example: write simple NeXus file

1 #include "napi.h"
2

3 int main()
4 {
5 int counts[50][1000], n_t=1000, n_p=50, dims[2], i;
6 float t[1000], phi[50];
7 NXhandle file_id;
8 /*
9 * Read in data using local routines to populate phi and counts

10 *
11 * for example you may create a getdata() function and call
12 *

63

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

13 * getdata (n_t, t, n_p, phi, counts);
14 */
15 /* Open output file and output global attributes */
16 NXopen ("NXfile.nxs", NXACC_CREATE5, &file_id);
17 NXputattr (file_id, "user_name", "Joe Bloggs", 10, NX_CHAR);
18 /* Open top-level NXentry group */
19 NXmakegroup (file_id, "Entry1", "NXentry");
20 NXopengroup (file_id, "Entry1", "NXentry");
21 /* Open NXdata group within NXentry group */
22 NXmakegroup (file_id, "Data1", "NXdata");
23 NXopengroup (file_id, "Data1", "NXdata");
24 /* Output time channels */
25 NXmakedata (file_id, "time_of_flight", NX_FLOAT32, 1, &n_t);
26 NXopendata (file_id, "time_of_flight");
27 NXputdata (file_id, t);
28 NXputattr (file_id, "units", "microseconds", 12, NX_CHAR);
29 NXclosedata (file_id);
30 /* Output detector angles */
31 NXmakedata (file_id, "polar_angle", NX_FLOAT32, 1, &n_p);
32 NXopendata (file_id, "polar_angle");
33 NXputdata (file_id, phi);
34 NXputattr (file_id, "units", "degrees", 7, NX_CHAR);
35 NXclosedata (file_id);
36 /* Output data */
37 dims[0] = n_t;
38 dims[1] = n_p;
39 NXmakedata (file_id, "counts", NX_INT32, 2, dims);
40 NXopendata (file_id, "counts");
41 NXputdata (file_id, counts);
42 i = 1;
43 NXputattr (file_id, "signal", &i, 1, NX_INT32);
44 NXputattr (file_id, "axes", "polar_angle:time_of_flight", 26, NX_CHAR);
45 NXclosedata (file_id);
46 /* Close NXentry and NXdata groups and close file */
47 NXclosegroup (file_id);
48 NXclosegroup (file_id);
49 NXclose (&file_id);
50 return;
51 }

NAPI F77 Example: write simple NeXus file

Note: The F77 interface is no longer being developed.

1 program WRITEDATA
2

3 include ’NAPIF.INC’
4 integer*4 status, file_id(NXHANDLESIZE), counts(1000,50), n_p, n_t, dims(2)
5 real*4 t(1000), phi(50)
6

7 !Read in data using local routines
8 call getdata (n_t, t, n_p, phi, counts)
9 !Open output file

10 status = NXopen (’NXFILE.NXS’, NXACC_CREATE, file_id)
11 status = NXputcharattr

64 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

12 + (file_id, ’user’, ’Joe Bloggs’, 10, NX_CHAR)
13 !Open top-level NXentry group
14 status = NXmakegroup (file_id, ’Entry1’, ’NXentry’)

15 status = NXopengroup (file_id, ’Entry1’, ’NXentry’)
16 !Open NXdata group within NXentry group
17 status = NXmakegroup (file_id, ’Data1’, ’NXdata’)

18 status = NXopengroup (file_id, ’Data1’, ’NXdata’)
19 !Output time channels
20 status = NXmakedata
21 + (file_id, ’time_of_flight’, NX_FLOAT32, 1, n_t)

22 status = NXopendata (file_id, ’time_of_flight’)
23 status = NXputdata (file_id, t)
24 status = NXputcharattr
25 + (file_id, ’units’, ’microseconds’, 12, NX_CHAR)
26 status = NXclosedata (file_id)
27 !Output detector angles
28 status = NXmakedata (file_id, ’polar_angle’, NX_FLOAT32, 1, n_p)

29 status = NXopendata (file_id, ’polar_angle’)
30 status = NXputdata (file_id, phi)
31 status = NXputcharattr (file_id, ’units’, ’degrees’, 7, NX_CHAR)
32 status = NXclosedata (file_id)
33 !Output data
34 dims(1) = n_t
35 dims(2) = n_p
36 status = NXmakedata (file_id, ’counts’, NX_INT32, 2, dims)

37 status = NXopendata (file_id, ’counts’)
38 status = NXputdata (file_id, counts)
39 status = NXputattr (file_id, ’signal’, 1, 1, NX_INT32)
40 status = NXputattr
41 + (file_id, ’axes’, ’polar_angle:time_of_flight’, 26, NX_CHAR)
42 status = NXclosedata (file_id)
43 !Close NXdata and NXentry groups and close file
44 status = NXclosegroup (file_id)
45 status = NXclosegroup (file_id)
46 status = NXclose (file_id)
47

48 stop
49 end

NAPI F90 Example: write simple NeXus file

1 program WRITEDATA
2

3 use NXUmodule
4

5 type(NXhandle) :: file_id
6 integer, pointer :: counts(:,:)
7 real, pointer :: t(:), phi(:)
8

9 !Use local routines to allocate pointers and fill in data
10 call getlocaldata (t, phi, counts)
11 !Open output file
12 if (NXopen ("NXfile.nxs", NXACC_CREATE, file_id) /= NX_OK) stop
13 if (NXUwriteglobals (file_id, user="Joe Bloggs") /= NX_OK) stop
14 !Set compression parameters
15 if (NXUsetcompress (file_id, NX_COMP_LZW, 1000) /= NX_OK) stop

2.1. Code Examples that use the NAPI 65

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

16 !Open top-level NXentry group
17 if (NXUwritegroup (file_id, "Entry1", "NXentry") /= NX_OK) stop
18 !Open NXdata group within NXentry group
19 if (NXUwritegroup (file_id, "Data1", "NXdata") /= NX_OK) stop
20 !Output time channels
21 if (NXUwritedata (file_id, "time_of_flight", t, "microseconds") /= NX_OK) stop
22 !Output detector angles
23 if (NXUwritedata (file_id, "polar_angle", phi, "degrees") /= NX_OK) stop
24 !Output data
25 if (NXUwritedata (file_id, "counts", counts, "counts") /= NX_OK) stop
26 if (NXputattr (file_id, "signal", 1) /= NX_OK) stop
27 if (NXputattr (file_id, "axes", "polar_angle:time_of_flight") /= NX_OK) stop
28 !Close NXdata group
29 if (NXclosegroup (file_id) /= NX_OK) stop
30 !Close NXentry group
31 if (NXclosegroup (file_id) /= NX_OK) stop
32 !Close NeXus file
33 if (NXclose (file_id) /= NX_OK) stop
34

35 end program WRITEDATA

NAPI Python Simple 3-D Write Example

A single code example is provided in this section that writes 3-D data to a NeXus HDF5 file in the Python language
using the NAPI. The data file may be retrieved from the repository of NeXus data file examples:

data http://svn.nexusformat.org/definitions/exampledata/simple3D.h5

The data to be written to the file is a simple three-dimensional array (2 x 3 x 4) of integers. The single dataset is
intended to demonstrate the order in which each value of the array is stored in a NeXus HDF5 data file.

NAPI Python Example: write simple NeXus file

1 #!/usr/bin/python
2

3 import sys
4 import nxs
5 import numpy
6

7 nf = nxs.open("simple3D.h5", "w5")
8

9 nf.makegroup("entry","NXentry")
10 nf.opengroup("entry","NXentry")
11

12 nf.makegroup("data","NXdata")
13 nf.opengroup("data","NXdata")
14

15 a = numpy.zeros((2,3,4),dtype=numpy.int)
16 val = 0
17 for i in range(2):
18 for j in range(3):
19 for k in range(4):
20 a[i,j,k] = val
21 val = val + 1
22

23 nf.makedata("test",’int32’,[2,3,4])

66 Chapter 2. Examples of writing and reading NeXus data files

http://svn.nexusformat.org/definitions/exampledata/simple3D.h5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

24 nf.opendata("test")
25 nf.putdata(a)
26 nf.putattr("signal",1)
27 nf.closedata()
28

29 nf.closegroup() # NXdata
30 nf.closegroup() # NXentry
31

32 nf.close()
33

34 exit

View a NeXus HDF5 file using h5dump

For the purposes of an example, it is instructive to view the content of the NeXus HDF5 file produced by the above
program. Since HDF5 is a binary file format, we cannot show the contents of the file directly in this manual. Instead,
we first we view the content by showing the output from the h5dump tool provided as part of the HDF5 tool kit:
h5dump simple3D.h5

NAPI Python Example: h5dump output of NeXus HDF5 file

1 HDF5 "simple3D.h5" {
2 GROUP "/" {
3 ATTRIBUTE "NeXus_version" {
4 DATATYPE H5T_STRING {
5 STRSIZE 5;
6 STRPAD H5T_STR_NULLTERM;
7 CSET H5T_CSET_ASCII;
8 CTYPE H5T_C_S1;
9 }

10 DATASPACE SCALAR
11 DATA {
12 (0): "4.1.0"
13 }
14 }
15 ATTRIBUTE "file_name" {
16 DATATYPE H5T_STRING {
17 STRSIZE 11;
18 STRPAD H5T_STR_NULLTERM;
19 CSET H5T_CSET_ASCII;
20 CTYPE H5T_C_S1;
21 }
22 DATASPACE SCALAR
23 DATA {
24 (0): "simple3D.h5"
25 }
26 }
27 ATTRIBUTE "HDF5_Version" {
28 DATATYPE H5T_STRING {
29 STRSIZE 5;
30 STRPAD H5T_STR_NULLTERM;
31 CSET H5T_CSET_ASCII;
32 CTYPE H5T_C_S1;
33 }
34 DATASPACE SCALAR

2.1. Code Examples that use the NAPI 67

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

35 DATA {
36 (0): "1.6.6"
37 }
38 }
39 ATTRIBUTE "file_time" {
40 DATATYPE H5T_STRING {
41 STRSIZE 24;
42 STRPAD H5T_STR_NULLTERM;
43 CSET H5T_CSET_ASCII;
44 CTYPE H5T_C_S1;
45 }
46 DATASPACE SCALAR
47 DATA {
48 (0): "2011-11-18 17:26:27+0100"
49 }
50 }
51 GROUP "entry" {
52 ATTRIBUTE "NX_class" {
53 DATATYPE H5T_STRING {
54 STRSIZE 7;
55 STRPAD H5T_STR_NULLTERM;
56 CSET H5T_CSET_ASCII;
57 CTYPE H5T_C_S1;
58 }
59 DATASPACE SCALAR
60 DATA {
61 (0): "NXentry"
62 }
63 }
64 GROUP "data" {
65 ATTRIBUTE "NX_class" {
66 DATATYPE H5T_STRING {
67 STRSIZE 6;
68 STRPAD H5T_STR_NULLTERM;
69 CSET H5T_CSET_ASCII;
70 CTYPE H5T_C_S1;
71 }
72 DATASPACE SCALAR
73 DATA {
74 (0): "NXdata"
75 }
76 }
77 DATASET "test" {
78 DATATYPE H5T_STD_I32LE
79 DATASPACE SIMPLE { (2, 3, 4) / (2, 3, 4) }
80 DATA {
81 (0,0,0): 0, 1, 2, 3,
82 (0,1,0): 4, 5, 6, 7,
83 (0,2,0): 8, 9, 10, 11,
84 (1,0,0): 12, 13, 14, 15,
85 (1,1,0): 16, 17, 18, 19,
86 (1,2,0): 20, 21, 22, 23
87 }
88 ATTRIBUTE "signal" {
89 DATATYPE H5T_STD_I32LE
90 DATASPACE SCALAR
91 DATA {
92 (0): 1

68 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

93 }
94 }
95 }
96 }
97 }
98 }
99 }

View a NeXus HDF5 file using h5toText.py

The output of h5dump contains a lot of structural information about the HDF5 file that can distract us from the actual
content we added to the file. Next, we show the output from a custom Python tool (h5toText.py) that we describe
in a later section (h5toText support module) of this chapter. This tool was developed to show the actual data content of
an HDF5 file that we create.

NAPI Python Example: h5toText output of NeXus HDF5 file

1 simple3D.h5:NeXus data file
2 @NeXus_version = 4.1.0
3 @file_name = simple3D.h5
4 @HDF5_Version = 1.6.6
5 @file_time = 2011-11-18 17:26:27+0100
6 entry:NXentry
7 @NX_class = NXentry
8 data:NXdata
9 @NX_class = NXdata

10 test:NX_INT32[2,3,4] = __array
11 @signal = 1
12 __array = [
13 [

14 [0, 1, 2, 3]
15 [4, 5, 6, 7]
16 [8, 9, 10, 11]
17]
18 [
19 [12, 13, 14, 15]
20 [16, 17, 18, 19]
21 [20, 21, 22, 23]
22]
23]

2.2 Code Examples that do not use the NAPI

Sometimes, for whatever reason, it is necessary to write or read NeXus files without using the routines provided by
the NAPI: NeXus Application Programmer Interface (frozen). Each example in this section is written to support just
one of the low-level file formats supported by NeXus (HDF4, HDF5, or XML).

2.2.1 Example NeXus C programs using native HDF5 commands

C-language code examples are provided for writing and reading NeXus-compliant files using the native HDF5 inter-
faces. These examples are derived from the simple NAPI examples for writing and reading given in the Introduction

2.2. Code Examples that do not use the NAPI 69

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

chapter. Compare these code examples with Example NeXus programs using NAPI.

Writing a simple NeXus file using native HDF5 commands in C

1 /**
2 * This is an example how to write a valid NeXus file
3 * using the HDF-5 API alone. Ths structure which is
4 * going to be created is:
5 *
6 * scan:NXentry
7 * data:NXdata
8 * counts[]
9 * @signal=1

10 * two_theta[]
11 * @units=degrees
12 *
13 * WARNING: each of the HDF function below needs to be
14 * wrapped into something like:
15 *
16 * if((hdfid = H5function(...)) < 0){
17 * handle error gracefully
18 * }
19 * I left the error checking out in order to keep the
20 * code clearer
21 *
22 * This also installs a link from /scan/data/two_theta to /scan/hugo
23 *
24 * Mark Koennecke, October 2011
25 */
26 #include <hdf5.h>
27 #include <stdlib.h>
28 #include <string.h>
29

30 #define LENGTH 400
31 int main(int argc, char *argv[])
32 {
33 float two_theta[LENGTH];
34 int counts[LENGTH], i, rank, signal;
35

36 /* HDF-5 handles */
37 hid_t fid, fapl, gid, atts, atttype, attid;
38 hid_t datatype, dataspace, dataprop, dataid;
39 hsize_t dim[1], maxdim[1];
40

41

42 /* create some data: nothing NeXus or HDF-5 specific */
43 for(i = 0; i < LENGTH; i++){
44 two_theta[i] = 10. + .1*i;
45 counts[i] = (int)(1000 * ((float)random()/(float)RAND_MAX));
46 }
47 dim[0] = LENGTH;
48 maxdim[0] = LENGTH;
49 rank = 1;
50

51

52

53 /*

70 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

54 * open the file. The file attribute forces normal file
55 * closing behaviour down HDF-5’s throat
56 */
57 fapl = H5Pcreate(H5P_FILE_ACCESS);
58 H5Pset_fclose_degree(fapl,H5F_CLOSE_STRONG);
59 fid = H5Fcreate("NXfile.h5", H5F_ACC_TRUNC, H5P_DEFAULT,fapl);
60 H5Pclose(fapl);
61

62

63 /*
64 * create scan:NXentry
65 */
66 gid = H5Gcreate(fid, (const char *)"scan",0);
67 /*
68 * store the NX_class attribute. Notice that you
69 * have to take care to close those hids after use
70 */
71 atts = H5Screate(H5S_SCALAR);
72 atttype = H5Tcopy(H5T_C_S1);
73 H5Tset_size(atttype, strlen("NXentry"));
74 attid = H5Acreate(gid,"NX_class", atttype, atts, H5P_DEFAULT);
75 H5Awrite(attid, atttype, (char *)"NXentry");
76 H5Sclose(atts);
77 H5Tclose(atttype);
78 H5Aclose(attid);
79

80 /*
81 * same thing for data:Nxdata in scan:NXentry.
82 * A subroutine would be nice to have here.......
83 */
84 gid = H5Gcreate(fid, (const char *)"/scan/data",0);
85 atts = H5Screate(H5S_SCALAR);
86 atttype = H5Tcopy(H5T_C_S1);
87 H5Tset_size(atttype, strlen("NXdata"));
88 attid = H5Acreate(gid,"NX_class", atttype, atts, H5P_DEFAULT);
89 H5Awrite(attid, atttype, (char *)"NXdata");
90 H5Sclose(atts);
91 H5Tclose(atttype);
92 H5Aclose(attid);
93

94 /*
95 * store the counts dataset
96 */
97 dataspace = H5Screate_simple(rank,dim,maxdim);
98 datatype = H5Tcopy(H5T_NATIVE_INT);
99 dataprop = H5Pcreate(H5P_DATASET_CREATE);

100 dataid = H5Dcreate(gid,(char *)"counts",datatype,dataspace,dataprop);
101 H5Dwrite(dataid, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, counts);
102 H5Sclose(dataspace);
103 H5Tclose(datatype);
104 H5Pclose(dataprop);
105 /*
106 * set the signal=1 attribute
107 */
108 atts = H5Screate(H5S_SCALAR);
109 atttype = H5Tcopy(H5T_NATIVE_INT);
110 H5Tset_size(atttype,1);
111 attid = H5Acreate(dataid,"signal", atttype, atts, H5P_DEFAULT);

2.2. Code Examples that do not use the NAPI 71

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

112 signal = 1;
113 H5Awrite(attid, atttype, &signal);
114 H5Sclose(atts);
115 H5Tclose(atttype);
116 H5Aclose(attid);
117

118 H5Dclose(dataid);
119

120 /*
121 * store the two_theta dataset
122 */
123 dataspace = H5Screate_simple(rank,dim,maxdim);
124 datatype = H5Tcopy(H5T_NATIVE_FLOAT);
125 dataprop = H5Pcreate(H5P_DATASET_CREATE);
126 dataid = H5Dcreate(gid,(char *)"two_theta",datatype,dataspace,dataprop);
127 H5Dwrite(dataid, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, two_theta);
128 H5Sclose(dataspace);
129 H5Tclose(datatype);
130 H5Pclose(dataprop);
131

132 /*
133 * set the units attribute
134 */
135 atttype = H5Tcopy(H5T_C_S1);
136 H5Tset_size(atttype, strlen("degrees"));
137 atts = H5Screate(H5S_SCALAR);
138 attid = H5Acreate(dataid,"units", atttype, atts, H5P_DEFAULT);
139 H5Awrite(attid, atttype, (char *)"degrees");
140 H5Sclose(atts);
141 H5Tclose(atttype);
142 H5Aclose(attid);
143 /*
144 * set the target attribute for linking
145 */
146 atttype = H5Tcopy(H5T_C_S1);
147 H5Tset_size(atttype, strlen("/scan/data/two_theta"));
148 atts = H5Screate(H5S_SCALAR);
149 attid = H5Acreate(dataid,"target", atttype, atts, H5P_DEFAULT);
150 H5Awrite(attid, atttype, (char *)"/scan/data/two_theta");
151 H5Sclose(atts);
152 H5Tclose(atttype);
153 H5Aclose(attid);
154

155

156 H5Dclose(dataid);
157

158 /*
159 * make a link in /scan to /scan/data/two_theta, thereby
160 * renaming two_theta to hugo
161 */
162 H5Glink(fid,H5G_LINK_HARD,"/scan/data/two_theta","/scan/hugo");
163

164 /*
165 * close the file
166 */
167 H5Fclose(fid);
168 }

72 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Reading a simple NeXus file using native HDF5 commands in C

1 /**
2 * Reading example for reading NeXus files with plain
3 * HDF-5 API calls. This reads out counts and two_theta
4 * out of the file generated by nxh5write.
5 *
6 * WARNING: I left out all error checking in this example.
7 * In production code you have to take care of those errors
8 *
9 * Mark Koennecke, October 2011

10 */
11 #include <hdf5.h>
12 #include <stdlib.h>
13

14 int main(int argc, char *argv[])
15 {
16 float *two_theta = NULL;
17 int *counts = NULL, rank, i;
18 hid_t fid, dataid, fapl;
19 hsize_t *dim = NULL;
20 hid_t datatype, dataspace, memdataspace;
21

22 /*
23 * Open file, thereby enforcing proper file close
24 * semantics
25 */
26 fapl = H5Pcreate(H5P_FILE_ACCESS);
27 H5Pset_fclose_degree(fapl,H5F_CLOSE_STRONG);
28 fid = H5Fopen("NXfile.h5", H5F_ACC_RDONLY,fapl);
29 H5Pclose(fapl);
30

31 /*
32 * open and read the counts dataset
33 */
34 dataid = H5Dopen(fid,"/scan/data/counts");
35 dataspace = H5Dget_space(dataid);
36 rank = H5Sget_simple_extent_ndims(dataspace);
37 dim = malloc(rank*sizeof(hsize_t));
38 H5Sget_simple_extent_dims(dataspace, dim, NULL);
39 counts = malloc(dim[0]*sizeof(int));
40 memdataspace = H5Tcopy(H5T_NATIVE_INT32);
41 H5Dread(dataid,memdataspace,H5S_ALL, H5S_ALL,H5P_DEFAULT, counts);
42 H5Dclose(dataid);
43 H5Sclose(dataspace);
44 H5Tclose(memdataspace);
45

46 /*
47 * open and read the two_theta data set
48 */
49 dataid = H5Dopen(fid,"/scan/data/two_theta");
50 dataspace = H5Dget_space(dataid);
51 rank = H5Sget_simple_extent_ndims(dataspace);
52 dim = malloc(rank*sizeof(hsize_t));
53 H5Sget_simple_extent_dims(dataspace, dim, NULL);
54 two_theta = malloc(dim[0]*sizeof(float));
55 memdataspace = H5Tcopy(H5T_NATIVE_FLOAT);
56 H5Dread(dataid,memdataspace,H5S_ALL, H5S_ALL,H5P_DEFAULT, two_theta);

2.2. Code Examples that do not use the NAPI 73

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

57 H5Dclose(dataid);
58 H5Sclose(dataspace);
59 H5Tclose(memdataspace);
60

61

62

63 H5Fclose(fid);
64

65 for(i = 0; i < dim[0]; i++){
66 printf("%8.2f %10d\n", two_theta[i], counts[i]);
67 }
68

69 }

2.2.2 Python Examples using h5py

One way to gain a quick familiarity with NeXus is to start working with some data. For at least the first few examples
in this section, we have a simple two-column set of 1-D data, collected as part of a series of alignment scans by the
APS USAXS instrument during the time it was stationed at beam line 32ID. We will show how to write this data using
the Python language and the h5py package 1 (using h5py calls directly rather than using the NeXus NAPI). The
actual data to be written was extracted (elsewhere) from a spec 2 data file and read as a text block from a file by the
Python source code. Our examples will start with the simplest case and add only mild complexity with each new case
since these examples are meant for those who are unfamiliar with NeXus.

The data shown plotted in the next figure will be written to the NeXus HDF5 file using the only two required NeXus
objects NXentry and NXdata in the first example and then minor variations on this structure in the next two ex-
amples. The data model is identical to the one in the Introduction chapter except that the names will be different, as
shown below:

Figure 2.1: data structure, (from Introduction)

our h5py example

1 /entry:NXentry
2 /mr_scan:NXdata
3 /mr : float64[31]
4 /I00 : int32[31]

1 h5py: http://code.google.com/p/h5py
2 SPEC: http://certif.com/spec.html

74 Chapter 2. Examples of writing and reading NeXus data files

http://code.google.com/p/h5py
http://certif.com/spec.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.2: plot of our mr_scan

two-column data for our mr_scan

1 17.92608 1037
2 17.92591 1318
3 17.92575 1704
4 17.92558 2857
5 17.92541 4516
6 17.92525 9998
7 17.92508 23819
8 17.92491 31662
9 17.92475 40458

10 17.92458 49087
11 17.92441 56514
12 17.92425 63499
13 17.92408 66802
14 17.92391 66863
15 17.92375 66599
16 17.92358 66206
17 17.92341 65747
18 17.92325 65250
19 17.92308 64129
20 17.92291 63044
21 17.92275 60796
22 17.92258 56795
23 17.92241 51550
24 17.92225 43710
25 17.92208 29315
26 17.92191 19782
27 17.92175 12992
28 17.92158 6622
29 17.92141 4198
30 17.92125 2248
31 17.92108 1321

2.2. Code Examples that do not use the NAPI 75

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Writing the simplest data using h5py

These two examples show how to write the simplest data (above). One example writes the data directly to the NXdata
group while the other example writes the data to NXinstrument/NXdetector/data and then creates a soft link
to that data in NXdata.

h5py example writing the simplest NeXus data file

In this example, the 1-D scan data will be written into the simplest possible NeXus HDF5 data file, containing only
the required NeXus components. NeXus requires at least one NXentry group at the root level of an HDF5 file. The
NXentry group contains all the data and associated information that comprise a single measurement. NeXus also
requires that each NXentry group must contain at least one NXdata group. NXdata is used to describe the plottable
data in the NXentry group. The simplest place to store data in a NeXus file is directly in the NXdata group, as
shown in the next figure.

Figure 2.3: Simple Example

In the above figure, the data file (writer_1_3_h5py.hdf5) contains a hierarchy of items, starting with an
NXentry named entry. (The full HDF5 path reference, /entry in this case, is shown to the right of each com-
ponent in the data structure.) The next h5py code example will show how to build an HDF5 data file with this
structure. Starting with the numerical data described above, the only information written to the file is the absolute
minimum information NeXus requires. In this example, you can see how the HDF5 file is created, how Data Groups
and datasets (Data Fields) are created, and how Data Attributes are assigned. Note particularly the NX_class at-
tribute on each HDF5 group that describes which of the NeXus Base Class Definitions is being used. When the
next Python program (writer_1_3_h5py.py) is run from the command line (and there are no problems), the
writer_1_3_h5py.hdf5 file is generated.

1 #!/usr/bin/env python
2 ’’’
3 Writes the simplest NeXus HDF5 file using h5py
4 according to the example from Figure 1.3
5 in the Introduction chapter
6 ’’’
7

76 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

8 import h5py
9 import numpy

10

11 INPUT_FILE = ’input.dat’
12 HDF5_FILE = ’writer_1_3_h5py.hdf5’
13

14 #---------------------------
15

16 tthData, countsData = numpy.loadtxt(INPUT_FILE).T
17

18 f = h5py.File(HDF5_FILE, "w") # create the HDF5 NeXus file
19 # since this is a simple example, no attributes are used at this point
20

21 nxentry = f.create_group(’Scan’)
22 nxentry.attrs["NX_class"] = ’NXentry’
23

24 nxdata = nxentry.create_group(’data’)
25 nxdata.attrs["NX_class"] = ’NXdata’
26

27 tth = nxdata.create_dataset("two_theta", data=tthData)
28 tth.attrs[’units’] = "degrees"
29

30 counts = nxdata.create_dataset("counts", data=countsData)
31 counts.attrs[’units’] = "counts"
32 counts.attrs[’signal’] = 1
33 counts.attrs[’axes’] = "two_theta"
34

35 f.close() # be CERTAIN to close the file

We wish to make things a bit simpler for ourselves when creating the common structures we use in our data files. To
help, we gather together some of the common concepts such as create a file, create a NeXus group, create a dataset
and start to build a helper library. (See mylib support module for more details.) Here, we call it my_lib. Applying
it to the simple example above, our code only becomes a couple lines shorter! (Let’s hope the library starts to help in
larger or more complicated projects.) Here’s the revision that replaces direct calls to numpy and h5py with calls to
our library. It generates the file writer_1_3.hdf5.

1 #!/usr/bin/env python
2 ’’’
3 Writes the simplest NeXus HDF5 file using
4 a simple helper library with h5py and numpy calls
5 according to the example from Figure 1.3
6 in the Introduction chapter
7 ’’’
8

9 import my_lib
10

11 INPUT_FILE = ’input.dat’
12 HDF5_FILE = ’writer_1_3.hdf5’
13

14 #---------------------------
15

16 tthData, countsData = my_lib.get2ColumnData(INPUT_FILE)
17

18 f = my_lib.makeFile(HDF5_FILE)
19 # since this is a simple example, no attributes are used at this point
20

21 nxentry = my_lib.makeGroup(f, ’Scan’, ’NXentry’)
22 nxdata = my_lib.makeGroup(nxentry, ’data’, ’NXdata’)

2.2. Code Examples that do not use the NAPI 77

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

23

24 my_lib.makeDataset(nxdata, "two_theta", tthData, units=’degrees’)
25 my_lib.makeDataset(nxdata, "counts", countsData,
26 units=’counts’, signal=1, axes=’two_theta’)
27

28 f.close() # be CERTAIN to close the file

One of the tools provided with the HDF5 support libraries is the h5dump command, a command-line tool to print
out the contents of an HDF5 data file. With no better tool in place (the output is verbose), this is a good tool
to investigate what has been written to the HDF5 file. View this output from the command line using h5dump
writer_1_3.hdf5. Compare the data contents with the numbers shown above. Note that the various HDF5 data
types have all been decided by the h5py support package.

Note: The only difference between this file and one written using the NAPI is that the NAPI file will have some
additional, optional attributes set at the root level of the file that tells the original file name, time it was written, and
some version information about the software involved.

1 HDF5 "writer_1_3.hdf5" {
2 GROUP "/" {
3 GROUP "Scan" {
4 ATTRIBUTE "NX_class" {
5 DATATYPE H5T_STRING {
6 STRSIZE 7;
7 STRPAD H5T_STR_NULLPAD;
8 CSET H5T_CSET_ASCII;
9 CTYPE H5T_C_S1;

10 }
11 DATASPACE SCALAR
12 DATA {
13 (0): "NXentry"
14 }
15 }
16 GROUP "data" {
17 ATTRIBUTE "NX_class" {
18 DATATYPE H5T_STRING {
19 STRSIZE 6;
20 STRPAD H5T_STR_NULLPAD;
21 CSET H5T_CSET_ASCII;
22 CTYPE H5T_C_S1;
23 }
24 DATASPACE SCALAR
25 DATA {
26 (0): "NXdata"
27 }
28 }
29 DATASET "counts" {
30 DATATYPE H5T_STD_I32LE
31 DATASPACE SIMPLE { (31) / (31) }
32 DATA {
33 (0): 1037, 1318, 1704, 2857, 4516, 9998, 23819, 31662, 40458,
34 (9): 49087, 56514, 63499, 66802, 66863, 66599, 66206, 65747,
35 (17): 65250, 64129, 63044, 60796, 56795, 51550, 43710, 29315,
36 (25): 19782, 12992, 6622, 4198, 2248, 1321
37 }
38 ATTRIBUTE "units" {
39 DATATYPE H5T_STRING {
40 STRSIZE 6;

78 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

41 STRPAD H5T_STR_NULLPAD;
42 CSET H5T_CSET_ASCII;
43 CTYPE H5T_C_S1;
44 }
45 DATASPACE SCALAR
46 DATA {
47 (0): "counts"
48 }
49 }
50 ATTRIBUTE "signal" {
51 DATATYPE H5T_STRING {
52 STRSIZE 1;
53 STRPAD H5T_STR_NULLPAD;
54 CSET H5T_CSET_ASCII;
55 CTYPE H5T_C_S1;
56 }
57 DATASPACE SCALAR
58 DATA {
59 (0): "1"
60 }
61 }
62 ATTRIBUTE "axes" {
63 DATATYPE H5T_STRING {
64 STRSIZE 9;
65 STRPAD H5T_STR_NULLPAD;
66 CSET H5T_CSET_ASCII;
67 CTYPE H5T_C_S1;
68 }
69 DATASPACE SCALAR
70 DATA {
71 (0): "two_theta"
72 }
73 }
74 }
75 DATASET "two_theta" {
76 DATATYPE H5T_IEEE_F64LE
77 DATASPACE SIMPLE { (31) / (31) }
78 DATA {
79 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
80 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
81 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
82 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
83 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,
84 (30): 17.9211
85 }
86 ATTRIBUTE "units" {
87 DATATYPE H5T_STRING {
88 STRSIZE 7;
89 STRPAD H5T_STR_NULLPAD;
90 CSET H5T_CSET_ASCII;
91 CTYPE H5T_C_S1;
92 }
93 DATASPACE SCALAR
94 DATA {
95 (0): "degrees"
96 }
97 }
98 }

2.2. Code Examples that do not use the NAPI 79

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

99 }
100 }
101 }
102 }

Since the output of h5dump is verbose, a tool (see h5toText support module) was created to print out the structure of
HDF5 data files. This tool provides a simplified view of the NeXus file. It is run with a command like this: python
h5toText.py h5dump writer_1_3.hdf5. Here is the output:

1 writer_1_3.hdf5:NeXus data file
2 Scan:NXentry
3 @NX_class = NXentry
4 data:NXdata
5 @NX_class = NXdata
6 counts:NX_INT32[31] = __array
7 @units = counts

8 @signal = 1

9 @axes = two_theta

10 __array = [1037, 1318, 1704, ’...’, 1321]
11 two_theta:NX_FLOAT64[31] = __array
12 @units = degrees
13 __array = [17.926079999999999, 17.925909999999998,
14 17.925750000000001, ’...’, 17.92108]

As the data files in these examples become more complex, you will appreciate the information density provided by the
h5toText.py tool.

h5py example writing a simple NeXus data file with links

Building on the previous example, we wish to identify our measured data with the detector on the instrument where
it was generated. In this hypothetical case, since the detector was positioned at some angle two_theta, we choose to
store both datasets, two_theta and counts, in a NeXus group. One appropriate NeXus group is NXdetector. This
group is placed in a NXinstrument group which is placed in a NXentry group. Still, NeXus requires a NXdata group.
Rather than duplicate the same data already placed in the detector group, we choose to link to those datasets from the
NXdata group. (Compare the next figure with Linking in a NeXus file in the NeXus Design chapter of the NeXus
User Manual.) The NeXus Design chapter provides a figure (Linking in a NeXus file) with a small variation from our
previous example, placing the measured data within the /entry/instrument/detector group. Links are made
from that data to the /entry/data group.

Figure 2.4: h5py example showing linking in a NeXus file

The Python code to build an HDF5 data file with that structure (using numerical data from the previous example) is

80 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

shown below.

1 #!/usr/bin/env python
2 ’’’
3 Writes a simple NeXus HDF5 file using h5py with links
4 according to the example from Figure 2.1 in the Design chapter
5 ’’’
6

7 import my_lib
8

9 INPUT_FILE = ’input.dat’
10 HDF5_FILE = ’writer_2_1.hdf5’
11

12 #---------------------------
13

14 tthData, countsData = my_lib.get2ColumnData(INPUT_FILE)
15

16 f = my_lib.makeFile(HDF5_FILE) # create the HDF5 NeXus file
17

18 nxentry = my_lib.makeGroup(f, ’entry’, ’NXentry’)
19 nxinstrument = my_lib.makeGroup(nxentry, ’instrument’, ’NXinstrument’)
20 nxdetector = my_lib.makeGroup(nxinstrument, ’detector’, ’NXdetector’)
21

22 tth = my_lib.makeDataset(nxdetector, "two_theta", tthData, units=’degrees’)
23 counts = my_lib.makeDataset(nxdetector, "counts", countsData,
24 units=’counts’, signal=1, axes=’two_theta’)
25

26 nxdata = my_lib.makeGroup(nxentry, ’data’, ’NXdata’)
27 my_lib.makeLink(nxdetector, tth, nxdata.name+’/two_theta’)
28 my_lib.makeLink(nxdetector, counts, nxdata.name+’/counts’)
29

30 f.close() # be CERTAIN to close the file

It is interesting to compare the output of the h5dump of the data file writer_2_1.hdf5 with our Python instruc-
tions.

1 HDF5 "writer_2_1.hdf5" {
2 GROUP "/" {
3 GROUP "entry" {
4 ATTRIBUTE "NX_class" {
5 DATATYPE H5T_STRING {
6 STRSIZE 7;
7 STRPAD H5T_STR_NULLPAD;
8 CSET H5T_CSET_ASCII;
9 CTYPE H5T_C_S1;

10 }
11 DATASPACE SCALAR
12 DATA {
13 (0): "NXentry"
14 }
15 }
16 GROUP "data" {
17 ATTRIBUTE "NX_class" {
18 DATATYPE H5T_STRING {
19 STRSIZE 6;
20 STRPAD H5T_STR_NULLPAD;
21 CSET H5T_CSET_ASCII;
22 CTYPE H5T_C_S1;
23 }

2.2. Code Examples that do not use the NAPI 81

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

24 DATASPACE SCALAR
25 DATA {
26 (0): "NXdata"
27 }
28 }
29 DATASET "counts" {
30 DATATYPE H5T_STD_I32LE
31 DATASPACE SIMPLE { (31) / (31) }
32 DATA {
33 (0): 1037, 1318, 1704, 2857, 4516, 9998, 23819, 31662, 40458,
34 (9): 49087, 56514, 63499, 66802, 66863, 66599, 66206, 65747,
35 (17): 65250, 64129, 63044, 60796, 56795, 51550, 43710, 29315,
36 (25): 19782, 12992, 6622, 4198, 2248, 1321
37 }
38 ATTRIBUTE "units" {
39 DATATYPE H5T_STRING {
40 STRSIZE 6;
41 STRPAD H5T_STR_NULLPAD;
42 CSET H5T_CSET_ASCII;
43 CTYPE H5T_C_S1;
44 }
45 DATASPACE SCALAR
46 DATA {
47 (0): "counts"
48 }
49 }
50 ATTRIBUTE "signal" {
51 DATATYPE H5T_STRING {
52 STRSIZE 1;
53 STRPAD H5T_STR_NULLPAD;
54 CSET H5T_CSET_ASCII;
55 CTYPE H5T_C_S1;
56 }
57 DATASPACE SCALAR
58 DATA {
59 (0): "1"
60 }
61 }
62 ATTRIBUTE "axes" {
63 DATATYPE H5T_STRING {
64 STRSIZE 9;
65 STRPAD H5T_STR_NULLPAD;
66 CSET H5T_CSET_ASCII;
67 CTYPE H5T_C_S1;
68 }
69 DATASPACE SCALAR
70 DATA {
71 (0): "two_theta"
72 }
73 }
74 ATTRIBUTE "target" {
75 DATATYPE H5T_STRING {
76 STRSIZE 33;
77 STRPAD H5T_STR_NULLPAD;
78 CSET H5T_CSET_ASCII;
79 CTYPE H5T_C_S1;
80 }
81 DATASPACE SCALAR

82 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

82 DATA {
83 (0): "/entry/instrument/detector/counts"
84 }
85 }
86 }
87 DATASET "two_theta" {
88 DATATYPE H5T_IEEE_F64LE
89 DATASPACE SIMPLE { (31) / (31) }
90 DATA {
91 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
92 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
93 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
94 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
95 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,
96 (30): 17.9211
97 }
98 ATTRIBUTE "units" {
99 DATATYPE H5T_STRING {

100 STRSIZE 7;
101 STRPAD H5T_STR_NULLPAD;
102 CSET H5T_CSET_ASCII;
103 CTYPE H5T_C_S1;
104 }
105 DATASPACE SCALAR
106 DATA {
107 (0): "degrees"
108 }
109 }
110 ATTRIBUTE "target" {
111 DATATYPE H5T_STRING {
112 STRSIZE 36;
113 STRPAD H5T_STR_NULLPAD;
114 CSET H5T_CSET_ASCII;
115 CTYPE H5T_C_S1;
116 }
117 DATASPACE SCALAR
118 DATA {
119 (0): "/entry/instrument/detector/two_theta"
120 }
121 }
122 }
123 }
124 GROUP "instrument" {
125 ATTRIBUTE "NX_class" {
126 DATATYPE H5T_STRING {
127 STRSIZE 12;
128 STRPAD H5T_STR_NULLPAD;
129 CSET H5T_CSET_ASCII;
130 CTYPE H5T_C_S1;
131 }
132 DATASPACE SCALAR
133 DATA {
134 (0): "NXinstrument"
135 }
136 }
137 GROUP "detector" {
138 ATTRIBUTE "NX_class" {
139 DATATYPE H5T_STRING {

2.2. Code Examples that do not use the NAPI 83

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

140 STRSIZE 10;
141 STRPAD H5T_STR_NULLPAD;
142 CSET H5T_CSET_ASCII;
143 CTYPE H5T_C_S1;
144 }
145 DATASPACE SCALAR
146 DATA {
147 (0): "NXdetector"
148 }
149 }
150 DATASET "counts" {
151 HARDLINK "/entry/data/counts"
152 }
153 DATASET "two_theta" {
154 HARDLINK "/entry/data/two_theta"
155 }
156 }
157 }
158 }
159 }
160 }

Look carefully! It appears from the output of h5dump that the actual data for two_theta and counts has moved
into the NXdata group at HDF5 path /entry/data! But we stored that data in the NXdetector group at
/entry/instrument/detector. This is normal for h5dump output.

A bit of explanation is necessary at this point. The data is not stored in either HDF5 group directly. Instead, HDF5
creates a DATA storage element in the file and posts a reference to that DATA storage element as needed. An HDF5
hard link requests another reference to that same DATA storage element. The h5dump tool describes in full that DATA
storage element the first time (alphabetically) it is called. In our case, that is within the NXdata group. The next time
it is called, within the NXdetector group, h5dump reports that a hard link has been made and shows the HDF5
path to the description.

NeXus recognizes this behavior of the HDF5 library and adds an additional structure when building hard links, the
target attribute, to preserve the original location of the data. Not that it actually matters. The h5toText.py
tool knows about the additional NeXus target attribute and shows the data to appear in its original location, in the
NXdetector group.

1 writer_2_1.hdf5:NeXus data file
2 entry:NXentry
3 @NX_class = NXentry
4 data:NXdata
5 @NX_class = NXdata
6 counts --> /entry/instrument/detector/counts
7 two_theta --> /entry/instrument/detector/two_theta
8 instrument:NXinstrument
9 @NX_class = NXinstrument

10 detector:NXdetector
11 @NX_class = NXdetector
12 counts:NX_INT32[31] = __array
13 @units = counts

14 @signal = 1

15 @axes = two_theta

16 @target = /entry/instrument/detector/counts

17 __array = [1037, 1318, 1704, ’...’, 1321]
18 two_theta:NX_FLOAT64[31] = __array
19 @units = degrees

20 @target = /entry/instrument/detector/two_theta

84 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

21 __array = [17.926079999999999, 17.925909999999998,
22 17.925750000000001, ’...’, 17.92108]

Complete h5py example writing and reading a NeXus data file

Writing the HDF5 file using h5py

In the main code section of BasicWriter.py, a current time stamp is written in the format of ISO 8601. For simplicity
of this code example, we use a text string for the time, rather than computing it directly from Python support library
calls. It is easier this way to see the exact type of string formatting for the time. When using the Python datatime
package, one way to write the time stamp is:

1 timestamp = "T".join(str(datetime.datetime.now()).split())

The data (mr is similar to “two_theta” and I00 is similar to “counts”) is collated into two Python lists. We use our
my_lib support to read the file and parse the two-column format.

The new HDF5 file is opened (and created if not already existing) for writing, setting common NeXus
attributes in the same command from our support library. Proper HDF5+NeXus groups are created for
/entry:NXentry/mr_scan:NXdata. Since we are not using the NAPI, our support library must create and
set the NX_class attribute on each group.

Note: We want to create the desired structure of /entry:NXentry/mr_scan:NXdata/. First, our support
library calls nxentry = f.create_group("entry") to create the NXentry group called entry at the root
level. Then, it calls nxdata = nxentry.create_group("mr_scan") to create the NXentry group called
entry as a child of the NXentry group.

Next, we create a dataset called title to hold a title string that can appear on the default plot.

Next, we create datasets for mr and I00 using our support library. The data type of each, as represented in numpy,
will be recognized by h5py and automatically converted to the proper HDF5 type in the file. A Python dictionary of
attributes is given, specifying the engineering units and other values needed by NeXus to provide a default plot of this
data. By setting signal=1 as an attribute on I00, NeXus recognizes I00 as the default y axis for the plot. The
axes="mr" connects the dataset to be used as the x axis.

Finally, we must remember to call f.close() or we might corrupt the file when the program quits.

BasicWriter.py: Write a NeXus HDF5 file using Python with h5py

1 #!/usr/bin/env python
2 ’’’Writes a NeXus HDF5 file using h5py and numpy’’’
3

4 import h5py # HDF5 support
5 import numpy
6 import my_lib # uses h5py
7

8 print "Write a NeXus HDF5 file"
9 fileName = "prj_test.nexus.hdf5"

10 timestamp = "2010-10-18T17:17:04-0500"
11

12 # load data from two column format
13 data = numpy.loadtxt(’input.dat’).T
14 mr_arr = data[0]
15 i00_arr = numpy.asarray(data[1],’int32’)

2.2. Code Examples that do not use the NAPI 85

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

16

17 # create the HDF5 NeXus file
18 f = my_lib.makeFile(fileName, file_name=fileName,
19 file_time=timestamp,
20 instrument="APS USAXS at 32ID-B",
21 creator="BasicWriter.py",
22 NeXus_version="4.3.0",
23 HDF5_Version=h5py.version.hdf5_version,
24 h5py_version=h5py.version.version)
25

26 nxentry = my_lib.makeGroup(f, "entry", "NXentry")
27 my_lib.makeDataset(nxentry, ’title’, data=’1-D scan of I00 v. mr’)
28

29 nxdata = my_lib.makeGroup(nxentry, "mr_scan", "NXdata")
30

31 my_lib.makeDataset(nxdata, "mr", mr_arr, units=’degrees’,
32 long_name=’USAXS mr (degrees)’)
33

34 my_lib.makeDataset(nxdata, "I00", i00_arr, units=’counts’,
35 signal=1, # Y axis of default plot
36 axes=’mr’, # name "mr" as X axis
37 long_name=’USAXS I00 (counts)’)
38

39 f.close() # be CERTAIN to close the file
40

41 print "wrote file:", fileName

Reading the HDF5 file using h5py

The file reader, BasicReader.py, is very simple since the bulk of the work is done by h5py. Our code opens the HDF5
we wrote above, prints the HDF5 attributes from the file, reads the two datasets, and then prints them out as columns.
As simple as that. Of course, real code might add some error-handling and extracting other useful stuff from the file.

Note: See that we identified each of the two datasets using HDF5 absolute path references (just using the group and
dataset names). Also, while coding this example, we were reminded that HDF5 is sensitive to upper or lowercase.
That is, I00 is not the same is i00.

BasicReader.py: Read a NeXus HDF5 file using Python with h5py

1 #!/usr/bin/env python
2 ’’’Reads NeXus HDF5 files using h5py and prints the contents’’’
3

4 import h5py # HDF5 support
5

6 fileName = "prj_test.nexus.hdf5"
7 f = h5py.File(fileName, "r")
8 for item in f.attrs.keys():
9 print item + ":", f.attrs[item]

10 mr = f[’/entry/mr_scan/mr’]
11 i00 = f[’/entry/mr_scan/I00’]
12 print "%s\t%s\t%s" % ("#", "mr", "I00")
13 for i in range(len(mr)):
14 print "%d\t%g\t%d" % (i, mr[i], i00[i])
15 f.close()

86 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Output from BasicReader.py is shown next.

Output from BasicReader.py

1 file_name: prj_test.nexus.hdf5
2 file_time: 2010-10-18T17:17:04-0500
3 creator: BasicWriter.py
4 HDF5_Version: 1.8.5
5 NeXus_version: 4.3.0
6 h5py_version: 1.2.1
7 instrument: APS USAXS at 32ID-B
8 # mr I00
9 0 17.9261 1037

10 1 17.9259 1318
11 2 17.9258 1704
12 3 17.9256 2857
13 4 17.9254 4516
14 5 17.9252 9998
15 6 17.9251 23819
16 7 17.9249 31662
17 8 17.9247 40458
18 9 17.9246 49087
19 10 17.9244 56514
20 11 17.9243 63499
21 12 17.9241 66802
22 13 17.9239 66863
23 14 17.9237 66599
24 15 17.9236 66206
25 16 17.9234 65747
26 17 17.9232 65250
27 18 17.9231 64129
28 19 17.9229 63044
29 20 17.9228 60796
30 21 17.9226 56795
31 22 17.9224 51550
32 23 17.9222 43710
33 24 17.9221 29315
34 25 17.9219 19782
35 26 17.9217 12992
36 27 17.9216 6622
37 28 17.9214 4198
38 29 17.9213 2248
39 30 17.9211 1321

Validating the HDF5 file

Now we have an HDF5 file that contains our data. What makes this different from a NeXus data file? A NeXus file
has a specific arrangement of groups and datasets in an HDF5 file.

To test that our HDF5 file conforms to the NeXus standard, we use the Java-version of NXvalidate. Referring to the
next figure, we compare our HDF5 file with the rules for generic 3 data files (all.nxdl.xml). The only items that
have been flagged are the “non-standard field names” mr and I00. Neither of these two names is specifically named in
the NeXus NXDL definition for the NXdata base class. As we’ll see shortly, this is not a problem.

3 generic NeXus data files: NeXus data files for which no application-specific NXDL applies

2.2. Code Examples that do not use the NAPI 87

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.5: NeXus validation of our HDF5 file

Note: Note that NXvalidate shows only the first data field for mr and I00.

Plotting the HDF5 file

Now that we are certain our file conforms to the NeXus standard, let’s plot it using the NeXpy 4 client tool. To help
label the plot, we added the long_name attributes to each of our datasets. We also added metadata to the root level
of our HDF5 file similar to that written by the NAPI. It seemed to be a useful addition. Compare this with plot of our
mr_scan and note that the horizontal axis of this plot is mirrored from that above. This is because the data is stored in
the file in descending mr order and NeXpy has plotted it that way by default.

Links to Data in External HDF5 Files

HDF5 files may contain links to data (or groups) in other files. This can be used to advantage to refer to data in
existing HDF5 files and create NeXus-compliant data files. Here, we show such an example, using the same counts
v. two_theta data from the examples above.

file: external_angles.hdf5

Take for example, the structure of external_angles.hdf5, a simple HDF5 data file that contains just the
two_theta angles in an HDF5 dataset at the root level of the file. Although this is a valid HDF5 data file, it is
not a valid NeXus data file:

4 NeXpy: http://nexpy.github.io/nexpy/

88 Chapter 2. Examples of writing and reading NeXus data files

http://nexpy.github.io/nexpy/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.6: plot of our mr_scan using NeXpy

1 angles:float64[31] = [17.926079999999999, ’...’, 17.92108]

2 @units = degrees

file: external_counts.hdf5

The data in the file external_angles.hdf5 might be referenced from another HDF5 file (such as
external_counts.hdf5) by an HDF5 external link. 5 Here is an example of the structure

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 counts:NX_INT32[31] = [1037, ’...’, 1321]

5 @units = counts

6 @signal = 1

7 @axes = two_theta
8 two_theta --> file="external_angles.hdf5", path="/angles"

Note: The file external_counts.hdf5 is not a complete NeXus file since it does not contain an NXdata group
containing a dataset with signal=1 attribute.

file: external_master.hdf5

A valid NeXus data file could be created that refers to the data in these files without making a copy of the data files
themselves.

5 see these URLs for further guidance on HDF5 external links: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html#Link-CreateExternal,
http://www.h5py.org/docs-1.3/guide/group.html#external-links

2.2. Code Examples that do not use the NAPI 89

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html#Link-CreateExternal
http://www.h5py.org/docs-1.3/guide/group.html#external-links

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Note: It is necessary for all these files to be located together in the same directory for the HDF5 external file links to
work properly.‘

To be a valid NeXus file, it must contain a NXentry group containing a NXdata group containing only one dataset with
the aatribute signal=1. For the files above, it is simple to make a master file that links to the data we desire, from
structure that we create. In external_counts.hdf5 above, see that the required attribute signal=1 is already
present. Here is external_master.hdf5, an example:

1 entry:NXentry
2 instrument --> file="external_counts.hdf5", path="/entry/instrument"
3 data:NXdata
4 counts --> file="external_counts.hdf5", path="/entry/instrument/detector/counts"
5 two_theta --> file="external_angles.hdf5", path="/angles"

source code: externalExample.py

Here is the complete code of a Python program, using h5py to write a NeXus-compliant HDF5 file with links to data
in other HDF5 files.

externalExample.py: Write using HDF5 external links

1 #!/usr/bin/env python
2 ’’’
3 Writes a NeXus HDF5 file using h5py with links to data in other HDF5 files.
4

5 This example is based on ‘‘writer_2_1‘‘.
6 ’’’
7

8 import my_lib
9

10 FILE_INPUT = ’input.dat’
11 FILE_HDF5_MASTER = ’external_master.hdf5’
12 FILE_HDF5_ANGLES = ’external_angles.hdf5’
13 FILE_HDF5_COUNTS = ’external_counts.hdf5’
14

15 #---------------------------
16

17 # get some data
18 tthData, countsData = my_lib.get2ColumnData(FILE_INPUT)
19

20 # put the angle data in an external (non-NeXus) HDF5 data file
21 f = my_lib.makeFile(FILE_HDF5_ANGLES) # create an HDF5 file (non-NeXus)
22 tth = my_lib.makeDataset(f, "angles", tthData, units=’degrees’)
23 f.close() # be CERTAIN to close the file
24

25

26 # put the detector counts in an external NeXus HDF5 data file
27 f = my_lib.makeFile(FILE_HDF5_COUNTS)
28 nxentry = my_lib.makeGroup(f, ’entry’, ’NXentry’)
29 nxinstrument = my_lib.makeGroup(nxentry, ’instrument’, ’NXinstrument’)
30 nxdetector = my_lib.makeGroup(nxinstrument, ’detector’, ’NXdetector’)
31 counts = my_lib.makeDataset(nxdetector, "counts", countsData,
32 units=’counts’, signal=1, axes=’two_theta’)
33 # make a link since "two_theta" has not been stored here
34 my_lib.makeExternalLink(f, FILE_HDF5_ANGLES,

90 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

35 ’/angles’, nxdetector.name+’/two_theta’)
36 f.close()
37

38 # create a master NeXus HDF5 file
39 f = my_lib.makeFile(FILE_HDF5_MASTER)
40 nxentry = my_lib.makeGroup(f, ’entry’, ’NXentry’)
41 nxdata = my_lib.makeGroup(nxentry, ’data’, ’NXdata’)
42 my_lib.makeExternalLink(f, FILE_HDF5_ANGLES,
43 ’/angles’, nxdata.name+’/two_theta’)
44 my_lib.makeExternalLink(f, FILE_HDF5_COUNTS,
45 ’/entry/instrument/detector/counts’,
46 nxdata.name+’/counts’)
47 my_lib.makeExternalLink(f, FILE_HDF5_COUNTS,
48 ’/entry/instrument’,
49 nxentry.name+’/instrument’)
50 f.close()

Python Helper Modules for h5py Examples

Two additional Python modules were used to describe these h5py examples. The source code for each is given here.
The first is a library we wrote that helps us create standard NeXus components using h5py. The second is a tool that
helps us inspect the content and structure of HDF5 files.

mylib support module

The examples in this section make use of a small helper library that calls h5py to create the various NeXus data
components of Data Groups, Data Fields, Data Attributes, and Links. In a smaller sense, this subroutine library
(my_lib) fills the role of the NAPI for writing the data using h5py.

1 #!/usr/bin/env python
2 ’’’
3 my_lib: routines to support reading & writing NeXus HDF5 files using h5py
4 ’’’
5

6 import h5py # HDF5 support
7 import numpy # in this case, provides data structures
8

9 def makeFile(filename, **attr):
10 """
11 create and open an empty NeXus HDF5 file using h5py
12

13 Any named parameters in the call to this method will be saved as
14 attributes of the root of the file.
15 Note that **attr is a dictionary of named parameters.
16

17 :param str filename: valid file name
18 :param attr: optional keywords of attributes
19 :return: h5py file object
20 """
21 obj = h5py.File(filename, "w")
22 addAttributes(obj, attr)
23 return obj
24

25 def makeGroup(parent, name, nxclass, **attr):
26 """

2.2. Code Examples that do not use the NAPI 91

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

27 create a NeXus group
28

29 Any named parameters in the call to this method
30 will be saved as attributes of the group.
31 Note that **attr is a dictionary of named parameters.
32

33 :param obj parent: parent group
34 :param str name: valid NeXus group name
35 :param str nxclass: valid NeXus class name
36 :param attr: optional keywords of attributes
37 :return: h5py group object
38 """
39 obj = parent.create_group(name)
40 obj.attrs["NX_class"] = nxclass
41 addAttributes(obj, attr)
42 return obj
43

44 def makeDataset(parent, name, data = None, **attr):
45 ’’’
46 create and write data to a dataset in the HDF5 file hierarchy
47

48 Any named parameters in the call to this method
49 will be saved as attributes of the dataset.
50

51 :param obj parent: parent group
52 :param str name: valid NeXus dataset name
53 :param obj data: the data to be saved
54 :param attr: optional keywords of attributes
55 :return: h5py dataset object
56 ’’’
57 if data == None:
58 obj = parent.create_dataset(name)
59 else:
60 obj = parent.create_dataset(name, data=data)
61 addAttributes(obj, attr)
62 return obj
63

64 def makeLink(parent, sourceObject, targetName):
65 """
66 create an internal NeXus (hard) link in an HDF5 file
67

68 :param obj parent: parent group of source
69 :param obj sourceObject: existing HDF5 object
70 :param str targetName: HDF5 node path to be created,
71 such as ‘‘/entry/data/data‘‘
72 """
73 if not ’target’ in sourceObject.attrs:
74 # NeXus link, NOT an HDF5 link!
75 sourceObject.attrs["target"] = str(sourceObject.name)
76 parent._id.link(sourceObject.name, targetName, h5py.h5g.LINK_HARD)
77

78 def makeExternalLink(hdf5FileObject, sourceFile, sourcePath, targetPath):
79 """
80 create an external link from sourceFile, sourcePath to targetPath in hdf5FileObject
81

82 :param obj hdf5FileObject: open HDF5 file object
83 :param str sourceFile: file containing existing HDF5 object at sourcePath
84 :param str sourcePath: path to existing HDF5 object in sourceFile

92 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

85 :param str targetPath: full node path to be created in current open HDF5 file,
86 such as ‘‘/entry/data/data‘‘
87

88 .. note::
89 Since the object retrieved is in a different file,
90 its ".file" and ".parent" properties will refer to
91 objects in that file, not the file in which the link resides.
92

93 .. see:: http://www.h5py.org/docs-1.3/guide/group.html#external-links
94

95 This routine is provided as a reminder how to do this simple operation.
96 """
97 hdf5FileObject[targetPath] = h5py.ExternalLink(sourceFile, sourcePath)
98

99 def addAttributes(parent, attr):
100 """
101 add attributes to an h5py data item
102

103 :param obj parent: h5py parent object
104 :param dict attr: dictionary of attributes
105 """
106 if attr and type(attr) == type({}):
107 # attr is a dictionary of attributes
108 for k, v in attr.items():
109 parent.attrs[k] = v
110

111 def get2ColumnData(fileName):
112 ’’’
113 read two-column data from a file,
114 first column is float,
115 second column is integer
116 ’’’
117 buffer = numpy.loadtxt(fileName).T
118 xArr = buffer[0]
119 yArr = numpy.asarray(buffer[1],’int32’)
120 return xArr, yArr

h5toText support module

The module h5toText reads an HDF5 data file and prints out the structure of the groups, datasets, attributes, and
links in that file. There is a command-line option to print out more or less of the data in the dataset arrays.

1 #!/usr/bin/env python
2

3 ’’’
4 Print the structure of an HDF5 file to stdout
5 ’’’
6

7

8 import h5py
9 import os

10 import sys
11 import getopt
12

13

14 class H5toText(object):
15 ’’’

2.2. Code Examples that do not use the NAPI 93

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

16 Example usage showing default display::
17

18 mc = H5toText(filename)
19 mc.array_items_shown = 5
20 mc.report()
21 ’’’
22 filename = None
23 requested_filename = None
24 isNeXus = False
25 array_items_shown = 5
26

27 def __init__(self, filename, makeReport = False):
28 ’’’ Constructor ’’’
29 self.requested_filename = filename
30 if os.path.exists(filename):
31 self.filename = filename
32 self.isNeXus = self.testIsNeXus()
33 if makeReport:
34 self.report()
35

36 def report(self):
37 ’’’ reporter ’’’
38 if self.filename == None: return
39 f = h5py.File(self.filename, ’r’)
40 txt = self.filename
41 if self.isNeXus:
42 txt += ":NeXus data file"
43 self.showGroup(f, txt, indentation = "")
44 f.close()
45

46 def testIsNeXus(self):
47 ’’’
48 test if the selected HDF5 file is a NeXus file
49

50 At this time, the code only tests for the existence of
51 the NXentry group. The tests should be extended to require
52 a NXdata group and a single dataset containing signal=1 attribute.
53 ’’’
54 result = False
55 try:
56 f = h5py.File(self.filename, ’r’)
57 for value in f.itervalues():
58 #print str(type(value))
59 if ’.Group’ not in str(type(value)):
60 continue
61 #print value.attrs.keys()
62 if ’NX_class’ not in value.attrs:
63 continue
64 v = value.attrs[’NX_class’]
65 #print type(v), v, type("a string")
66 possible_types = ["<type ’numpy.string_’>",]
67 possible_types.append("<type ’str’>")
68 if str(type(v)) not in possible_types:
69 continue
70 if str(v) == str(’NXentry’):
71 # TODO: apply more tests
72 # for group NXdata
73 # and signal=1 attribute on only one dataset

94 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

74 result = True
75 break
76 f.close()
77 except:
78 pass
79 return result
80

81 def showGroup(self, obj, name, indentation = " "):
82 ’’’print the contents of the group’’’
83 nxclass = ""
84 if ’NX_class’ in obj.attrs:
85 class_attr = obj.attrs[’NX_class’]
86 nxclass = ":" + str(class_attr)
87 print indentation + name + nxclass
88 self.showAttributes(obj, indentation)
89 # show datasets and links next
90 groups = []
91 for itemname in sorted(obj):
92 linkref = obj.get(itemname, getlink=True)
93 if ’.ExternalLink’ in str(type(linkref)):
94 # if the external file is not present, cannot know if
95 # link target is a dataset or a group or another link
96 fmt = ’%s %s --> file="%s", path="%s"’
97 print fmt % (indentation, itemname, linkref.filename, linkref.path)
98 else:
99 classref = obj.get(itemname, getclass=True)

100 value = obj.get(itemname)
101 if ’.File’ in str(classref) or ’.Group’ in str(classref):
102 groups.append(value)
103 elif ’.Dataset’ in str(classref):
104 self.showDataset(value, itemname, indentation+" ")
105 else:
106 msg = "unidentified %s: %s, %s", itemname, repr(classref), repr(linkref)
107 raise Exception, msg
108 # then show things that look like groups
109 for value in groups:
110 itemname = value.name.split("/")[-1]
111 self.showGroup(value, itemname, indentation+" ")
112

113 def showAttributes(self, obj, indentation = " "):
114 ’’’print any attributes’’’
115 for name, value in obj.attrs.iteritems():
116 print "%s @%s = %s" % (indentation, name, str(value))
117

118 def showDataset(self, dset, name, indentation = " "):
119 ’’’print the contents and structure of a dataset’’’
120 shape = dset.shape
121 if self.isNeXus:
122 if "target" in dset.attrs:
123 if dset.attrs[’target’] != dset.name:
124 print "%s%s --> %s" % (indentation, name,
125 dset.attrs[’target’])
126 return
127 txType = self.getType(dset)
128 txShape = self.getShape(dset)
129 if shape == (1,):
130 value = " = %s" % str(dset[0])
131 print "%s%s:%s%s%s" % (indentation, name, txType,

2.2. Code Examples that do not use the NAPI 95

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

132 txShape, value)
133 self.showAttributes(dset, indentation)
134 else:
135 print "%s%s:%s%s = __array" % (indentation, name,
136 txType, txShape)
137 # show these before __array
138 self.showAttributes(dset, indentation)
139 if self.array_items_shown > 2:
140 value = self.formatArray(dset, indentation + ’ ’)
141 print "%s %s = %s" % (indentation, "__array", value)
142 else:
143 print "%s %s: %s" % (indentation, "__array", "not shown")
144

145 def getType(self, obj):
146 ’’’ get the storage (data) type of the dataset ’’’
147 t = str(obj.dtype)
148 if t[0:2] == ’|S’:
149 t = ’char[%s]’ % t[2:]
150 if self.isNeXus:
151 t = ’NX_’ + t.upper()
152 return t
153

154 def getShape(self, obj):
155 ’’’ return the shape of the HDF5 dataset ’’’
156 s = obj.shape
157 l = []
158 for dim in s:
159 l.append(str(dim))
160 if l == [’1’]:
161 result = ""
162 else:
163 result = "[%s]" % ",".join(l)
164 return result
165

166 def formatArray(self, obj, indentation = ’ ’):
167 ’’’ nicely format an array up to rank=5 ’’’
168 shape = obj.shape
169 r = ""
170 if len(shape) in (1, 2, 3, 4, 5):
171 r = self.formatNdArray(obj, indentation + ’ ’)
172 if len(shape) > 5:
173 r = "### no arrays for rank > 5 ###"
174 return r
175

176 def decideNumShown(self, n):
177 ’’’ determine how many values to show ’’’
178 if self.array_items_shown != None:
179 if n > self.array_items_shown:
180 n = self.array_items_shown - 2
181 return n
182

183 def formatNdArray(self, obj, indentation = ’ ’):
184 ’’’ return a list of lower-dimension arrays, nicely formatted ’’’
185 shape = obj.shape
186 rank = len(shape)
187 if not rank in (1, 2, 3, 4, 5): return None
188 n = self.decideNumShown(shape[0])
189 r = []

96 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

190 for i in range(n):
191 if rank == 1: item = obj[i]
192 if rank == 2: item = self.formatNdArray(obj[i, :])
193 if rank == 3: item = self.formatNdArray(obj[i, :, :],
194 indentation + ’ ’)
195 if rank == 4: item = self.formatNdArray(obj[i, :, :, :],
196 indentation + ’ ’)
197 if rank == 5: item = self.formatNdArray(obj[i, :, :, :, :],
198 indentation + ’ ’)
199 r.append(item)
200 if n < shape[0]:
201 # skip over most
202 r.append("...")
203 # get the last one
204 if rank == 1: item = obj[-1]
205 if rank == 2: item = self.formatNdArray(obj[-1, :])
206 if rank == 3: item = self.formatNdArray(obj[-1, :, :],
207 indentation + ’ ’)
208 if rank == 4: item = self.formatNdArray(obj[-1, :, :, :],
209 indentation + ’ ’)
210 if rank == 5: item = self.formatNdArray(obj[-1, :, :, :, :],
211 indentation + ’ ’)
212 r.append(item)
213 if rank == 1:
214 s = str(r)
215 else:
216 s = "[\n" + indentation + ’ ’
217 s += ("\n" + indentation + ’ ’).join(r)
218 s += "\n" + indentation + "]"
219 return s
220

221

222 def do_filelist(filelist, limit=5):
223 ’’’
224 interpret the structure of a list of HDF5 files
225

226 :param [str] filelist: one or more file names to be interpreted
227 :param int limit: maximum number of array items to be shown (default = 5)
228 ’’’
229 for item in filelist:
230 mc = H5toText(item)
231 mc.array_items_shown = limit
232 mc.report()
233

234

235 def do_test():
236 limit = 3
237 filelist = []
238 filelist.append(’th02c_ps02_1_master.h5’)
239 filelist.append(’external_angles.hdf5’)
240 filelist.append(’external_counts.hdf5’)
241 filelist.append(’external_master.hdf5’)
242 filelist.append(’../Create/example1.hdf5’)
243 filelist.append(’../Create/example2.hdf5’)
244 filelist.append(’../Create/example3.hdf5’)
245 filelist.append(’../Create/example4.hdf5’)
246 filelist.append(’../../../NeXus/definitions/trunk/manual/examples/h5py/prj_test.nexus.hdf5’)
247 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/dmc01.h5’)

2.2. Code Examples that do not use the NAPI 97

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

248 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/dmc02.h5’)
249 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/focus2007n001335.hdf’)
250 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/NXtest.h5’)
251 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/sans2009n012333.hdf’)
252 filelist.append(’../Create/simple5.nxs’)
253 filelist.append(’../Create/bad.h5’)
254

255 do_filelist(filelist, limit)
256

257

258 def main():
259 ’’’standard command-line interface’’’
260 try:
261 opts, args = getopt.getopt(sys.argv[1:], "n:")
262 except:
263 print
264 print "usage: ", sys.argv[0], " [-n ##] HDF5_file_name [another_HDF5_file_name]"
265 print " -n ## : limit number of displayed array items to ## (must be 3 or more or ’None’)"
266 print
267 for item in opts:
268 if item[0] == "-n":
269 if item[1].lower() == "none":
270 limit = None
271 else:
272 limit = int(item[1])
273 do_filelist(args)
274

275

276 if __name__ == ’__main__’:
277 if len(sys.argv) > 1:
278 main()
279 else:
280 do_test()

2.2.3 Viewing 2-D Data from LRMECS

The IPNS LRMECS instrument stored data in NeXus HDF4 data files. One such example is available from the
repository of NeXus data file examples. For this example, we will start with a conversion of that original data file into
HDF5 format.

HDF4 http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nxs

HDF5 http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nx5

This dataset contains two histograms with 2-D images (148x750 and 148x32) of 32-bit integers. First, we use the
h5dump tool to investigate the header content of the file (not showing any of the data).

Visualize Using h5dump

Here, the output of the command:

h5dump -H lrcs3701.nx5

has been edited to only show the first NXdata group (/Histogram1/data):

98 Chapter 2. Examples of writing and reading NeXus data files

http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nxs
http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nx5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

LRMECS lrcs3701 data: h5dump output

1 HDF5 "C:\Users\Pete\Documents\eclipse\NeXus\definitions\exampledata\IPNS\LRMECS\lrcs3701.nx5" {
2 GROUP "/Histogram1/data" {
3 DATASET "data" {
4 DATATYPE H5T_STD_I32LE
5 DATASPACE SIMPLE { (148, 750) / (148, 750) }
6 }
7 DATASET "polar_angle" {
8 DATATYPE H5T_IEEE_F32LE
9 DATASPACE SIMPLE { (148) / (148) }

10 }
11 DATASET "time_of_flight" {
12 DATATYPE H5T_IEEE_F32LE
13 DATASPACE SIMPLE { (751) / (751) }
14 }
15 DATASET "title" {
16 DATATYPE H5T_STRING {
17 STRSIZE 44;
18 STRPAD H5T_STR_NULLTERM;
19 CSET H5T_CSET_ASCII;
20 CTYPE H5T_C_S1;
21 }
22 DATASPACE SIMPLE { (1) / (1) }
23 }
24 }
25 }

Visualize Using HDFview

For many, the simplest way to view the data content of an HDF5 file is to use the HDFview program
(http://www.hdfgroup.org/hdf-java-html/hdfview) from The HDF Group. After starting HDFview, the data file may
be loaded by dragging it into the main HDF window. On opening up to the first NXdata group /Histogram1/data (as
above), and then double-clicking the dataset called: data, we get our first view of the data.

The data may be represented as an image by accessing the Open As menu from HDFview (on Windows, right click
the dataset called data and select the Open As item, consult the HDFview documentation for different platform in-
structions). Be sure to select the Image radio button, and then (accepting everything else as a default) press the Ok
button.

Note: In this image, dark represents low intensity while white represents high intensity.

LRMECS lrcs3701 data: image

Visualize Using IgorPro

Another way to visualize this data is to use a commercial package for scientific data visualization and analysis. One
such package is IgorPro from http://www.wavemetrics.com

IgorPro provides a browser for HDF5 files that can open our NeXus HDF5 and display the
image. Follow the instructions from WaveMetrics to install the HDF5 Browser package:
http://www.wavemetrics.com/products/igorpro/dataaccess/hdf5.htm

2.2. Code Examples that do not use the NAPI 99

http://www.hdfgroup.org/hdf-java-html/hdfview
http://www.wavemetrics.com
http://www.wavemetrics.com/products/igorpro/dataaccess/hdf5.htm

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.7: LRMECS lrcs3701 data: HDFview

Figure 2.8: LRMECS lrcs3701 data: HDFview Open As dialog

100 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.9: LRMECS lrcs3701 data: HDFview Image

You may not have to do this step if you have already installed the HDF5 Browser. IgorPro will tell you if it is not in-
stalled properly. To install the HDF5 Browser, first start IgorPro. Next, select from the menus and submenus: Data;
Load Waves; Packages; Install HDF5 Package as shown in the next figure. IgorPro may direct you to
perform more activities before you progress from this step.

Next, open the HDF5 Browser by selecting from the menus and submenus: Data; Load Waves; New HDF5
Browser as shown in the next figure.

Next, click the Open HDF5 File button and open the NeXus HDF5 file lrcs3701.nxs. In the lower left Groups
panel, click the data dataset. Also, under the panel on the right called Load Dataset Options, choose No Table as
shown. Finally, click the Load Dataset button (in the Datasets group) to display the image.

Note: In this image, dark represents low intensity while white represents high intensity. The image has been rotated
for easier representation in this manual.

LRMECS lrcs3701 data: image

2.2. Code Examples that do not use the NAPI 101

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.10: LRMECS lrcs3701 data: IgorPro install HDF5 Browser

102 Chapter 2. Examples of writing and reading NeXus data files

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.11: LRMECS lrcs3701 data: IgorPro HDFBrowser dialog

2.2. Code Examples that do not use the NAPI 103

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 2.12: LRMECS lrcs3701 data: IgorPro HDFBrowser dialog

Figure 2.13: LRMECS lrcs3701 data: IgorPro Image

104 Chapter 2. Examples of writing and reading NeXus data files

CHAPTER

THREE

NEXUS: REFERENCE
DOCUMENTATION

3.1 Introduction to NeXus definitions

While the design principles of NeXus are explained in the NeXus: User Manual, this Reference Documentation
specifies all allowed base classes and all standardized application definitions. Furthermore, it also contains contributed
definitions of new bases classes or application definitions that are currently under review.

Base class definitions and application definitions have basically the same structure, but different semantics: Base class
definitions define the complete set of terms that might be used in an instance of that class. Application definitions
define the minimum set of terms that must be used in an instance of that class.

Base classes and application definitions are specified using a domain-specific XML scheme, the NXDL: The NeXus
Definition Language.

3.1.1 Overview of NeXus definitions

For each class definition, the documentation is derived from content provided in the NXDL specification.

The documentation for each class consists of:

1. short table:

• the current version of the NXDL specification used for the class

• the category of the class (base class / application definition / contributed definition)

• The NeXus class extended by this class. Most NeXus base classes only extend the base class definition
(NXDL).

• any other base classes (groups) cited by this class

105

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

2. symbol list: keywords used to designate array dimensions. At present, this list is not guaranteed to be complete
(some array dimension names appear only in the description column of the class member table, and not
here)

3. source: a link to the authorative NXDL source

4. tree outline: hierarchical list of members.

5. member table: list of top-level members with natural-language annotations.

6. supplementary member tables as needed: member tables of subgroups.

3.1.2 Tree outlines

A compact listing of the basic structure (groups, fields, dimensions, attributes, and links) is prepared for each NXDL
specification. Indentation shows nested structure. Attributes are prepended with the @ symbol. Links use the characters
--> to represent the path to the intended source of the information.

3.1.3 Member tables

Member tables provide basic information about each field or group in the class. An example of the varieties of
specifications are given in the following table using items found in various NeXus base classes.

Name Type Units Description (and Occurrences)
program_name NX_CHAR Name of program used to generate this file
@version NX_CHAR Program version number

Occurences: 1 : default
@configuration NX_CHAR configuration of the program
thumbnail NXnote A small image that is representative of the entry. An

example of this is a 640x480 JPEG image
automatically produced by a low resolution plot of
the NXdata.

@mime_type NX_CHAR expected: mime_type=”image/*”
NXgeometry describe the geometry of this class

distance NX_FLOAT NX_LENGTH Distance from sample
mode “Single

Bunch” |
“Multi Bunch”

source operating mode

target_material Ta | W |
depleted_U |
enriched_U |
Hg | Pb | C

Pulsed source target material

The columns in the table are described as follows:

Name (and attributes) Name of the data field. Since name needs to be restricted to valid program
variable names, no “-” characters can be allowed. Name must satisfy both HDF and XML naming.

1 NameStartChar ::= _ | a..z | A..Z
2 NameChar ::= NameStartChar | 0..9
3 Name ::= NameStartChar (NameChar)*
4

5 Or, as a regular expression: [_a-zA-Z][_a-zA-Z0-9]*
6 equivalent regular expression: [_a-zA-Z][\w_]*

106 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Attributes, identified with a leading “at” symbol (@) and belong with the preceding field or group, are
additional metadata used to define this field or group. In the example above, the program_name
element has two attributes: version (required) and configuration (optional) while the
thumbnail element has one attribute: mime_type (optional).

For groups, the name may not be declared in the NXDL specification. In such instances, the value
shown in parentheses in the Name and Attributes column is a suggestion, obtained from the group
by removing the “NX” prefix. See NXentry for examples.

Type Type of data to be represented by this variable. The type is one of those specified in NXDL: The
NeXus Definition Language. In the case where the variable can take only one value from a known
list, the list of known values is presented, such as in the target_material field above: Ta |
W | depleted_U | enriched_U | Hg | Pb | C. Selections with included whitespace
are surrounded by quotes. See the example above for usage.

For fields, the data type may not be specified in the NXDL file. The default data type is NX_CHAR
and this is shown in parentheses in the Type column. See NXdata for examples.

Units Data units, given as character strings, must conform to the NeXus units standard. See the NeXus
units section for details.

Description (and Occurrences) A simple text description of the data field. No markup or formatting
is allowed. The absence of Occurrences in the item description signifies that both minOccurs
and maxOccurs have the default values. If the number of occurrences of an item are specified
in the NXDL (through @minOccurs and @maxOccurs attributes), they will be reported in the
Description column similar to the example shown above. Default values for occurrences are shown
in the following table. The NXDL element type is either a group (such as a NeXus base class),
a field (that specifies the name and type of a variable), or an attribute of a field or group. The number
of times an item can appear ranges between minOccurs and maxOccurs. A default minOccurs
of zero means the item is optional. For attributes, maxOccurs cannot be greater than 1.

NXDL element type minOccurs maxOccurs
group 0 unbounded
field 0 unbounded
attribute 0 1

3.2 NXDL: The NeXus Definition Language

Information in NeXus data files is arranged by a set of rules. These rules facilitate the exchange of data between
scientists and software by standardizing common terms such as the way engineering units are described and the names
for common things and the way that arrays are described and stored.

The set of rules for storing information in NeXus data files is declared using the NeXus Definition Language. NXDL
itself is governed by a set of rules (a schema) that should simplify learning the few terms in NXDL. In fact, the NXDL
rules, written as an XML Schema, are machine-readable using industry-standard and widely-available software tools
for XML files such as xsltproc and xmllint. This chapter describes the rules and terms from which NXDL files
are constructed.

3.2.1 Introduction

NeXus Definition Language (NXDL) files allow scientists to define the nomenclature and arrangement of information
in NeXus data files. These NXDL files can be specific to a scientific discipline such as tomography or small-angle
scattering, specific analysis or data reduction software, or even to define another component (base class) used to design
and build NeXus data files.

3.2. NXDL: The NeXus Definition Language 107

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

In addition to this chapter and the Tutorial chapter, look at the set of NeXus NXDL files to learn how to read and
write NXDL files. These files are available from the NeXus definitions repository and are most easily viewed on
GitHub: https://github.com/nexusformat/definitions in the base_classes, applications, and contributed
directories. The rules (expressed as XML Schema) for NXDL files may also be viewed from this URL. See the files
nxdl.xsd for the main XML Schema and nxdlTypes.xsd for the listings of allowed data types and categories
of units allowed in NXDL files.

NXDL files can be checked (validated) for syntax and content. With validation, scientists can be certain their defini-
tions will be free of syntax errors. Since NXDL is based on the XML standard, there are many editing programs 1

available to ensure that the files are well-formed. 2 There are many standard tools such as xmllint and xsltproc
that can process XML files. Further, NXDL files are backed by a set of rules (an XML Schema) that define the language
and can be used to check that an NXDL file is both correct by syntax and valid by the NeXus rules.

NXDL files are machine-readable. This enables their automated conversion into schema files that can be used, in
combination with other NXDL files, to validate NeXus data files. In fact, all of the tables in the Class Definitions
Chapter have been generated directly from the NXDL files.

The language of NXDL files is intentionally quite small, to provide only that which is necessary to describe scientific
data structures (or to establish the necessary XML structures). Rather than have scientists prepare XML Schema files
directly, NXDL was designed to reduce the jargon necessary to define the structure of data files. The two principle
objects in NXDL files are: group and field. Documentation (doc) is optional for any NXDL component. Either
of these objects may have additional attributes that contribute simple metadata.

The Class Definitions Chapter lists the various classes from which a NeXus file is constructed. These classes provide
the glossary of items that could, in principle, be stored in a standard-conforming NeXus file (other items may be
inserted into the file if the author wishes, but they won’t be part of the standard). If you are going to include a particular
piece of metadata, refer to the class definitions for the standard nomenclature. However, to assist those writing data
analysis software, it is useful to provide more than a glossary; it is important to define the required contents of NeXus
files that contain data from particular classes of neutron, X-ray, or muon instrument.

NXDL Elements and Data Types

The documentation in this section has been obtained directly from the NXDL Schema file: nxdl.xsd. First, the basic
elements are defined in alphabetical order. Attributes to an element are indicated immediately following the element
and are preceded with an “@” symbol, such as @attribute. Then, the common data types used within the NXDL
specification are defined. Pay particular attention to the rules for validItemName and validNXClassName.

NXDL Elements

attribute An attribute element can only be a child of a field or group element. It is used to define attribute
elements to be used and their data types and possibly an enumeration of allowed values.

For more details, see: attributeType

definition A definition element can only be used at the root level of an NXDL specification. Note: Due to the
large number of attributes of the definition element, they have been omitted from the figure below.

For more details, see: definition, definitionType, and definitionTypeAttr

1 For example XML Copy Editor (http://xml-copy-editor.sourceforge.net/)
2 http://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling

108 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions
http://xml-copy-editor.sourceforge.net/
http://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.1: Graphical representation of the NXDL attribute element

dimensions The dimensions element describes the shape of an array. It is used only as a child of a field
element.

For more details, see: dimensionsType

doc A doc element can be a child of most NXDL elements. In most cases, the content of the doc element will also
become part of the NeXus manual.

element {any}:

In documentation, it may be useful to use an element that is not directly specified by the NXDL language. The any
element here says that one can use any element at all in a doc element and NXDL will not process it but pass it
through.

For more details, see: docType

enumeration An enumeration element can only be a child of a field or attribute element. It is used to
restrict the available choices to a predefined list, such as to control varieties in spelling of a controversial word (such
as metre vs. meter).

For more details, see: enumerationType

field The field element provides the value of a named item. Many different attributes are available to further
define the field. Some of the attributes are not allowed to be used together (such as axes and axis); see the
documentation of each for details. It is used only as a child of a group element.

For more details, see: fieldType

3.2. NXDL: The NeXus Definition Language 109

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.2: Graphical representation of the NXDL definition element

110 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.3: Graphical representation of the NXDL dimensions element

Figure 3.4: Graphical representation of the NXDL doc element

3.2. NXDL: The NeXus Definition Language 111

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.5: Graphical representation of the NXDL enumeration element

Figure 3.6: Graphical representation of the NXDL field element

112 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

group A group element can only be a child of a definition or group element. It describes a common level of
organization in a NeXus data file, similar to a subdirectory in a file directory tree.

For more details, see: groupType

link A link element can only be a child of a field or group element. It describes the path to the original source
of the parent field or group.

For more details, see: linkType

symbols A symbols element can only be a child of a definition element. It defines the array index symbols
to be used when defining arrays as field elements with common dimensions and lengths.

For more details, see: symbolsType

NXDL Data Types (internal)

Data types that define the NXDL language are described here. These data types are defined in the XSD Schema
(nxdl.xsd) and are used in various parts of the Schema to define common structures or to simplify a complicated
entry. While the data types are not intended for use in NXDL specifications, they define structures that may be used in
NXDL specifications.

attributeType Any new group or field may expect or require some common attributes.

(This data type is used internally in the NXDL schema to define elements and attributes to be used by users in NXDL
specifications.)

Attributes of attributeType

@name

Name of the attribute (unique within the enclosing group).

@type

Type of the attribute. For group specifications, the class name. For field or attribute specifica-
tions, the NXDL data type.

Elements of attributeType

doc

Description of this attribute. This documentation will go into the manual.

enumeration

An enumeration specifies the values to be used.

definition A definition element is the group at the root of every NXDL specification. It may only appear at
the root of an NXDL file and must only appear once for the NXDL to be well-formed.

3.2. NXDL: The NeXus Definition Language 113

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.7: Graphical representation of the NXDL group element

114 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.8: Graphical representation of the NXDL link element

Figure 3.9: Graphical representation of the NXDL symbols element

3.2. NXDL: The NeXus Definition Language 115

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

definitionType A definition is the root element of every NXDL definition. It may only appear at the root of an
NXDL file and must only appear once for the NXDL to be well-formed.

The definitionType defines the documentation, attributes, fields, and groups that will be used as children of the
definition element. Could contain these elements:

• attribute

• doc

• field

• group

• link

Note that a definition element also includes the definitions of the basicComponent data type. (The
definitionType data type is used internally in the NXDL schema to define elements and attributes to be used
by users in NXDL specifications.)

Attributes of definitionType

@category

NXDL base definitions define the dictionary of terms to use for these components. All terms in a
base definition are optional. NXDL application definitions define what is required for a scientific
interest. All terms in an application definition are required. NXDL contributed definitions may
be considered either base or applications. Contributed definitions <emphasis>must</emphasis> indicate
their intended use, either as a base class or as an application definition.

@extends

The extends attribute allows this definition to subclass from another NXDL, otherwise
extends="NXobject" should be used.

@ignoreExtraAttributes

Only validate known attributes; do not not warn about unknowns. The ignoreExtraAttributes
attribute is a flag to the process of validating NeXus data files. By setting
ignoreExtraAttributes="true", presence of any undefined attributes in this class will
not generate warnings during validation. Normally, validation will check all the attributes against their
definition in the NeXus base classes and application definitions. Any items found that do not match the
definition in the NXDL will generate a warning message.

The ignoreExtraAttributes attribute should be used sparingly!

@ignoreExtraFields

Only validate known fields; do not not warn about unknowns. The ignoreExtraFields attribute
is a flag to the process of validating NeXus data files. By setting ignoreExtraFields="true",
presence of any undefined fields in this class will not generate warnings during validation. Normally,
validation will check all the fields against their definition in the NeXus base classes and application defi-
nitions. Any items found that do not match the definition in the NXDL will generate a warning message.

The ignoreExtraFields attribute should be used sparingly!

116 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@ignoreExtraGroups

Only validate known groups; do not not warn about unknowns. The ignoreExtraGroups attribute
is a flag to the process of validating NeXus data files. By setting ignoreExtraGroups="true",
presence of any undefined groups in this class will not generate warnings during validation. Normally,
validation will check all the groups against their definition in the NeXus base classes and application
definitions. Any items found that do not match the definition in the NXDL will generate a warning
message.

The ignoreExtraGroups attribute should be used sparingly!

@name

The name of this NXDL file (without the file extensions). The name must be unique amongst all the
NeXus base class, application, and contributed definitions. For the class to be adopted by the NIAC, the
first two letters must be “NX” (in uppercase). Any other use must not begin with “NX” in any combination
of upper or lower case.

@restricts

The restricts attribute is a flag to the data validation. When restricts="1", any non-standard
component found (and checked for validity aginst this NXDL specification) in a NeXus data file will be
flagged as an error. If the restricts attribute is not present, any such situations will produce a warning.

@svnid

(2014-08-19: deprecated since switch to GitHub version control) The identifier string from the subversion
revision control system. This reports the time stamp and the revision number of this file. (Updated
automatically, unlike the version attribute.)

@type

Must be type="group"

@version

Version of this NXDL definition. Each NXDL specification may have a different version to facilitate soft-
ware maintenance. This value is modified by the person who edits this file when this NXDL specification
has changed significantly (in a way that downstream software should be aware).

Elements of definitionType

symbols

Use a symbols list to define each of the mnemonics that represent the length of each dimension in a
vector or array.

Groups under definitionType

In addition to an optional symbols list, a definition may contain any of the items allowed in a
group.

3.2. NXDL: The NeXus Definition Language 117

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

definitionTypeAttr Prescribes the allowed values for definition type attribute. (This data type is used inter-
nally in the NXDL schema to define a data type.)

The value may be any one from this list only:

• group

• definition

dimensionsType dimensions of a data element in a NeXus file (This data type is used internally in the NXDL schema
to define elements and attributes to be used by users in NXDL specifications.)

Attributes of dimensionsType

@rank

Rank (number of dimensions) of the data structure. For example: a[5] has rank="1" while
b[8,5,6,4] has rank="4". See http://en.wikipedia.org/wiki/Rank_(computer_programming) for
more details.

Elements of dimensionsType

dim

Specify the parameters for each index of the dimensions element with a dim element. The number of
dim entries should be equal to the rank of the array. For example, these terms describe a 2-D array with
lengths (nsurf, nwl):

1 <dimensions rank="2">
2 <dim index="1" value="nsurf"/>
3 <dim index="2" value="nwl"/>
4 </dimensions>

The value attribute is used by NXDL and also by the NeXus data file validation tools to associate and
coordinate the same array length across multiple fields in a group.

@incr

The dimension specification is related to the refindex axis within the ref field by an offset of incr.
Requires ref and refindex attributes to be present.

@index

Number or symbol indicating which axis (subscript) is being described, ranging from 1 up to rank (rank
of the data structure). For example, given an array A[i,j,k], index="1" would refer to the i axis
(subscript). (NXdata uses index="0" to indicate a situation when the specific index is not known a
priori.)

@ref

The dimension specification is the same as that in the ref field, specified either
by a relative path, such as polar_angle or ../Qvec or absolute path, such as
/entry/path/to/follow/to/ref/field.

118 Chapter 3. NeXus: Reference Documentation

http://en.wikipedia.org/wiki/Rank_(computer_programming

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@refindex

The dimension specification is the same as the refindex axis within the ref field. Requires ref
attribute to be present.

@value

Integer length (number of values), or mnemonic symbol representing the length of this axis.

doc

Documentation might be necessary to describe how the parts of the dimensions element are to be used.

docType NXDL allows for documentation on most elements using the doc element. The documentation is useful in
several contexts. The documentation will be rendered in the manual. Documentation, is provided as tooltips by some
XML editors when editing NXDL files. Simple documentation can be typed directly in the NXDL:

<field name="name">
<doc>Descriptive name of sample</doc>

</field>

This is suitable for basic descriptions that do not need extra formatting such as a bullet-list or a table. For more
advanced control, use the rules of restructured text, such as in the NXdetector specification. Refer to examples in the
NeXus base class NXDL files such as NXdata.

Could contain these elements:

• any

(This data type is used internally in the NXDL schema to define elements and attributes to be used by users in NXDL
specifications.)

enumerationType An enumeration restricts the values allowed for a specification. Each value is specified using
an item element, such as: <item value="Synchrotron X-ray Source"/>. Could contain these ele-
ments:

• doc

• item

(This data type is used internally in the NXDL schema to define elements and attributes to be used by users in NXDL
specifications.)

<field name="mode">
<doc>source operating mode</doc>
<enumeration>

<item value="Single Bunch"><doc>for storage rings</doc></item>
<item value="Multi Bunch"><doc>for storage rings</doc></item>
<!-- other sources could add to this -->

</enumeration>
</field>

Elements of enumerationType

item

One of the prescribed values. Use the value attribute.

3.2. NXDL: The NeXus Definition Language 119

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@value

The value of value of an enumItem is defined as an attribute rather than a name.

doc

Individual items can be documented but this documentation might not be printed in the NeXus Reference
Guide.

fieldType A field declares a new element in the component being defined. A field is synonymous with the
HDF4 SDS (Scientific Data Set) and the HDF5 dataset terms. Could contain these elements:

• attribute

• dimensions

• doc

• enumeration

Note that a field element also includes the definitions of the basicComponent data type. (The fieldType
data type is used internally in the NXDL schema to define elements and attributes to be used by users in NXDL
specifications.)

@axes

Presence of the axes attribute means this field is an ordinate.

This attribute contains a colon (or comma in legacy files) delimited list of the names of independent axes
when plotting this field. Each name in this list must exist as a field in the same group. <!– perhaps even
discourage use of square brackets in axes attribute? –> (Optionally, the list can be enclosed by square
brackets but this is not common.) The regular expression for this rule is:

[A-Za-z_][\w_]*([:][A-Za-z_][\w_]*)*

@axis

NOTE: Use of this attribute is discouraged. It is for legacy support. You should use the axes attribute
instead.

Presence of the axis attribute means this field is an abcissa.

The attribute value is an integer indicating this field as an axis that is part of the data set. The data set is
a field with the attribute signal=1 in the same group. The value can range from 1 up to the number of
independent axes (abcissae) in the data set.

A value of axis=1” indicates that this field contains the data for the first independent axis. For example,
the X axis in an XY data set.

A value of axis=2 indicates that this field contains the data for the second independent axis. For exam-
ple, the Y axis in a 2-D data set.

A value of axis=3 indicates that this field contains the data for the third independent axis. For example,
the Z axis in a 3-D data set.

A field with an axis attribute should not have a signal attribute.

120 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@interpretation

This instructs the consumer of the data what the last dimensions of the data are. It allows plotting software
to work out the natural way of displaying the data.

For example a single-element, energy-resolving, fluorescence detector with 512 bins should have
interpretation="spectrum". If the detector is scanned over a 512 x 512 spatial grid, the data
reported will be of dimensions: 512 x 512 x 512. In this example, the initial plotting representation should
default to data of the same dimensions of a 512 x 512 pixel image detector where the images where taken
at 512 different pressure values.

In simple terms, the allowed values mean:

• scaler = 0-D data to be plotted

• spectrum = 1-D data to be plotted

• image = 2-D data to be plotted

• vertex = 3-D data to be plotted

@long_name

Descriptive name for this field (may include whitespace and engineering units). Often, the long_name
(when defined) will be used as the axis label on a plot.

@maxOccurs

Defines the maximum number of times this element may be used. Its value is confined to zero or greater.
Must be greater than or equal to the value for the “minOccurs” attribute. A value of “unbounded” is
allowed.

@minOccurs

Defines the minimum number of times this element may be used. Its value is confined to zero or greater.
Must be less than or equal to the value for the “maxOccurs” attribute. A value of “unbounded” is allowed.

@offset

The stride and offset attributes are used together to index the array of data items in a multi-
dimensional array. They may be used as an alternative method to address a data array that is not stored in
the standard NeXus method of “C” order.

The offset attribute determines the starting coordinates of the data array for each dimension.

See http://davis.lbl.gov/Manuals/HDF5-1.4.3/Tutor/phypereg.html or 4. Dataspace Selection Operations
in http://www.hdfgroup.org/HDF5/doc1.6/Dataspaces.html.

The offset attribute contains a comma-separated list of integers. (In addition to the required comma
delimiter, whitespace is also allowed to improve readability.) The number of items in the list is equal to
the rank of the data being stored. The value of each item is the offset in the array of the first data item of
that subscript of the array.

@primary

Integer indicating the priority of selection of this field for plotting (or visualization) as an axis.

Presence of the primary attribute means this field is an abcissa.

3.2. NXDL: The NeXus Definition Language 121

http://davis.lbl.gov/Manuals/HDF5-1.4.3/Tutor/phypereg.html
http://www.hdfgroup.org/HDF5/doc1.6/Dataspaces.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@signal

Presence of the signal attribute means this field is an ordinate.

Integer marking this field as plottable data (ordinates). The value indicates the priority of selection or
interest. Some facilities only use signal=1 while others use signal=2 to indicate plottable data of
secondary interest. Higher numbers are possible but not common and interpretation is not standard.

A field with a signal attribute should not have an axis attribute.

@stride

The stride and offset attributes are used together to index the array of data items in a multi-
dimensional array. They may be used as an alternative method to address a data array that is not stored in
the standard NeXus method of “C” order.

The stride list chooses array locations from the data array with each value in the stride list deter-
mining how many elements to move in each dimension. Setting a value in the stride array to 1 moves
to each element in that dimension of the data array, while setting a value of 2 in a location in the stride
array moves to every other element in that dimension of the data array. A value in the stride list may
be positive to move forward or negative to step backward. A value of zero will not step (and is of no
particular use).

See http://davis.lbl.gov/Manuals/HDF5-1.4.3/Tutor/phypereg.html or 4. Dataspace Selection Operations
in http://www.hdfgroup.org/HDF5/doc1.6/Dataspaces.html.

The stride attribute contains a comma-separated list of integers. (In addition to the required comma
delimiter, whitespace is also allowed to improve readability.) The number of items in the list is equal to
the rank of the data being stored. The value of each item is the spacing of the data items in that subscript
of the array.

@type

Defines the type of the element as allowed by the NAPI (NeXus Application Programmer Interface). See
elsewhere for the complete list of allowed NAPI types.

@units

String describing the engineering units. The string should be appropriate for the value and should conform
to the NeXus rules for units. Conformance is not validated at this time.

attribute

attributes to be used with this field

dimensions

dimensions of a data element in a NeXus file

enumeration

A field can specify which values are to be used

122 Chapter 3. NeXus: Reference Documentation

http://davis.lbl.gov/Manuals/HDF5-1.4.3/Tutor/phypereg.html
http://www.hdfgroup.org/HDF5/doc1.6/Dataspaces.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

groupType A group element refers to the definition of an existing NX object or a locally-defined component. Could
contain these elements:

• attribute

• doc

• field

• group

• link

Note that a group element also includes the definitions of the basicComponent data type. (The groupType
data type is used internally in the NXDL schema to define elements and attributes to be used by users in NXDL
specifications.)

Attributes of groupType

@maxOccurs

Maximum number of times this group is allowed to be present within its parent group. Note each
group must have a name attribute that is unique among all group and field declarations within a
common parent group.

@minOccurs

Minimum number of times this group is allowed to be present within its parent group. Note each group
must have a name attribute that is unique among all group and field declarations within a common
parent group.

@name

A particular scientific application may expect a name of a group element. It is helpful but not required to
specify the name attribute in the NXDL file. It is suggested to always specify a name to avoid ambiguity.
It is also suggested to derive the name from the type, using an additional number suffix as necessary. For
example, consider a data file with only one NXentry. The suggested default name would be entry.
For a data file with two or more NXentry groups, the suggested names would be entry1, entry2,
... Alternatively, a scientific application such as small-angle scattering might require a different naming
procedure; two different NXaperture groups might be given the names beam-defining slit and
scatter slit.

@type

The type attribute must contain the name of a NeXus base class, application definition, or contributed
definition.

linkType A link to another item. Use a link to avoid needless repetition of information. (This data type is used
internally in the NXDL schema to define elements and attributes to be used by users in NXDL specifications.)

3.2. NXDL: The NeXus Definition Language 123

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@target

A link to another item, represented as an absolute path to an existing field such as
/NXentry/NXinstrument/NXdetector/polar_angle. Could contain these elements:

• doc

Matching regular expression:

(/[a-zA-Z_][\w_]*(:[a-zA-Z_][\w_]*)?)+

symbolsType Each symbol has a name and optional documentation. Please provide documentation that indicates
what each symbol represents. For example:

<symbols>
<symbol name="nsurf"><doc>number of reflecting surfaces</doc></symbol>
<symbol name="nwl"><doc>number of wavelengths</doc></symbol>

</symbols>

Elements of symbolsType

doc

Describe the purpose of this list of symbols. This documentation will go into the manual.

symbol

When multiple field elements share the same dimensions, such as the dimension scales associated with
plottable data in an NXdata group, the length of each dimension written in a NeXus data file should be
something that can be tested by the data file validation process.

@name

Mnemonic variable name for this array index symbol.

doc

Describe the purpose of the parent symbol. This documentation will go into the manual.

basicComponent A basicComponent defines the allowed name format and attributes common to all field and
group specifications. (This data type is used internally in the NXDL schema to define elements and attributes to be
used by users in NXDL specifications.)

Attributes of basicComponent

@deprecated

The presence of the deprecated attribute indicates to the data file validation process that an advisory
message (specified as the content of the deprecated attribute) will be reported. Future versions of the
NXDL file might not define (or even re-use) this component. For example:

deprecated="as of release MAJOR.MINOR"

Note: because deprecated is an attribute, the XML rules do not permit it to have any element content.

124 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@name

The name attribute is the identifier string for this entity. It is required that namemust be unique within the
enclosing group. The rule (validItemName) is defined to only allow names that can be represented
as valid variable names in most computer languages.

Elements of basicComponent

doc

Describe this basicComponent and its use. This documentation will go into the manual.

validItemName Used for allowed names of elements and attributes. Need to be restricted to valid program variable
names. Note: This means no “-” or ”.” characters can be allowed and you cannot start with a number. HDF4 had a
64 character limit on names (possibly including NULL) and NeXus enforces this via the NX_MAXNAMELEN variable
with a 64 character limit (which may be 63 on a practical basis if one considers a NULL terminating byte). (This data
type is used internally in the NXDL schema to define a data type.)

The value may be any xs:token that also matches the regular expression:

[A-Za-z_][\w_]*

validNXClassName Used for allowed names of NX class types (e.g. NXdetector) not the instance (e.g. bank1)
which is covered by validItemName. (This data type is used internally in the NXDL schema to define a data type.)

The value may be any nx:validItemName that also matches the regular expression:

NX.+

validTargetName This is a valid link target - currently it must be an absolute path made up of valid names with the
/ character delimiter. But we may want to consider allowing “..” (parent of directory) at some point. If the name
attribute is helpful, then use it in the path with the syntax of name:type as in these examples:

/NXentry/NXinstrument/analyzer:NXcrystal/ef
/NXentry/NXinstrument/monochromator:NXcrystal/ei
/NX_other

Must also consider use of name attribute in resolving link targets. (This data type is used internally in the NXDL
schema to define a data type.)

From the HDF5 documentation (http://www.hdfgroup.org/HDF5/doc/UG/UG_frame09Groups.html):

Note that relative path names in HDF5 do not employ the ‘‘../‘‘ notation, the UNIX notation
indicating a parent directory, to indicate a parent group.

Thus, if we only consider the case of [name:]type, the matching regular expression syntax is writ-
ten: /[a-zA-Z_][\w_]*(:[a-zA-Z_][\w_]*)?)+. Note that HDF5 also permits relative path
names, such as: GroupA/GroupB/Dataset1 but this is not permitted in the matching regular expres-
sion and not supported in NAPI.

The value may be any xs:token that also matches the regular expression:

(/[a-zA-Z_][\w_]*(:[a-zA-Z_][\w_]*)?)+

3.2. NXDL: The NeXus Definition Language 125

http://www.hdfgroup.org/HDF5/doc/UG/UG_frame09Groups.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

nonNegativeUnbounded A nonNegativeUnbounded allows values including all positive integers, zero, and
the string unbounded. (This data type is used internally in the NXDL schema to define a data type.)

The xs:string data type The xs:string data type can contain characters, line feeds, carriage returns, and tab
characters. See http://www.w3schools.com/Schema/schema_dtypes_string.asp for more details.

The xs:token data type The xs:string data type is derived from the xs:string data type.

The xs:token data type also contains characters, but the XML processor will remove
line feeds, carriage returns, tabs, leading and trailing spaces, and multiple spaces. See
http://www.w3schools.com/Schema/schema_dtypes_string.asp for more details.

NXDL: Data Types and Units

Data Types allowed in NXDL specifications

Data types for use in NXDL describe the expected type of data for a NeXus field. These terms are very broad. More
specific terms are used in actual NeXus data files that describe size and array dimensions. In addition to the types in
the following table, the NAPI type is defined when one wishes to permit a field with any of these data types.

ISO8601 ISO 8601 date and time representation (http://www.w3.org/TR/NOTE-datetime)

NX_BINARY any representation of binary data - if text, line terminator is [CR][LF]

NX_BOOLEAN true/false value (true | 1 | false | 0)

NX_CHAR any string representation

NX_DATE_TIME alias of ISO8601

NX_FLOAT any representation of a floating point number

NX_INT any representation of an integer number

NX_NUMBER any valid NeXus number representation

NX_POSINT any representation of a positive integer number (greater than zero)

NX_UINT any representation of an unsigned integer number (includes zero)

Unit Categories allowed in NXDL specifications

Unit categories in NXDL specifications describe the expected type of units for a NeXus field. They should describe
valid units consistent with the NeXus units section. The values for unit categories are restricted (by an enumeration)
to the following table.

NX_ANGLE example: degrees or radians or arcminutes or

NX_ANY usage: things like logs that aren’t picky on units

NX_AREA example: m2 or barns

NX_CHARGE example: pC or C

NX_CROSS_SECTION example: barns

NX_CURRENT example: A

NX_DIMENSIONLESS for fields where the units cancel out, example: “” or mm/mm (NOTE: not the
same as NX_UNITLESS)

NX_EMITTANCE emittance (length * angle) of a radiation source, example: nm*rad

126 Chapter 3. NeXus: Reference Documentation

http://www.w3schools.com/Schema/schema_dtypes_string.asp
http://www.w3schools.com/Schema/schema_dtypes_string.asp
http://www.w3.org/TR/NOTE-datetime

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NX_ENERGY example: J or keV

NX_FLUX example: s-1 cm-2

NX_FREQUENCY example: Hz

NX_LENGTH example: m

NX_MASS example: g

NX_MASS_DENSITY example: g cm-3

NX_MOLECULAR_WEIGHT example: g mol-1

NX_PERIOD (alias to NX_TIME) period of pulsed source, example: microseconds

NX_PER_AREA example: cm-2

NX_PER_LENGTH example: cm-1

NX_POWER example: W

NX_PRESSURE example: Pa

NX_PULSES (alias to NX_NUMBER) clock pulses

NX_SCATTERING_LENGTH_DENSITY example: cm-2

NX_SOLID_ANGLE example: sr | steradian

NX_TEMPERATURE example: K

NX_TIME example: s

NX_TIME_OF_FLIGHT (alias to NX_TIME) example: s

NX_UNITLESS for fields that don’t have a unit (e.g. hkl) so that they don’t inherit the wrong units
(NOTE: not the same as NX_DIMENSIONLESS)

NX_VOLTAGE example: V

NX_VOLUME example: m3

NX_WAVELENGTH example: Angstrom

NX_WAVENUMBER units for Q, example: Angstrom-1 or nm-1

3.3 Base Class Definitions

A description of each NeXus base class definition is given. NeXus base class definitions define the complete set of
terms that might be used in an instance of that class. Consider the base classes as a set of components that are used to
construct a data file.

3.3.1 NXaperture

Status:

base class, extends NXobject, version 1.0

Description:

Template of a beamline aperture.

Symbols:

3.3. Base Class Definitions 127

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

No symbol table

Groups cited: NXgeometry, NXnote

Structure:

material: NX_CHAR

Absorbing material of the aperture

description: NX_CHAR

Description of aperture

(geometry): NXgeometry

location and shape of aperture

(geometry): NXgeometry

location and shape of each blade

(note): NXnote

describe an additional information in a note*

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXaperture.nxdl.xml

3.3.2 NXattenuator

Status:

base class, extends NXobject, version 1.0

Description:

Description of a device that reduces the intensity of a beam by attenuation. If uncertain whether
to use NXfilter (band-pass filter) or NXattenuator (reduces beam intensity), then choose
NXattenuator.

Symbols:

No symbol table

Groups cited: none

Structure:

distance: NX_FLOAT {units=NX_LENGTH}

Distance from sample

type: NX_CHAR

Type or composition of attenuator, e.g. polythene

thickness: NX_FLOAT {units=NX_LENGTH}

Thickness of attenuator along beam direction

scattering_cross_section: NX_FLOAT {units=NX_CROSS_SECTION}

Scattering cross section (coherent+incoherent)

absorption_cross_section: NX_FLOAT {units=NX_CROSS_SECTION}

Absorption cross section

attenuator_transmission: NX_FLOAT {units=NX_DIMENSIONLESS}

128 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXaperture.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The nominal amount of the beam that gets through (transmitted intensity)/(incident intensity)

status: NX_CHAR

In or out or moving of the beam

Any of these values: in | out | moving

@time: NX_DATE_TIME

time stamp for this observation

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXattenuator.nxdl.xml

3.3.3 NXbeam

Status:

base class, extends NXobject, version 1.0

Description:

Template of the state of the neutron or X-ray beam at any location. It will be referenced by beamline
component groups within the NXinstrument group or by the NXsample group. Note that variables such
as the incident energy could be scalar values or arrays. This group is especially valuable in storing the
results of instrument simulations in which it is useful to specify the beam profile, time distribution etc. at
each beamline component. Otherwise, its most likely use is in the NXsample group in which it defines
the results of the neutron scattering by the sample, e.g., energy transfer, polarizations.

Symbols:

No symbol table

Groups cited: NXdata

Structure:

distance: NX_FLOAT {units=NX_LENGTH}

Distance from sample

incident_energy[i]: NX_FLOAT {units=NX_ENERGY}

Energy on entering beamline component

final_energy[i]: NX_FLOAT {units=NX_ENERGY}

Energy on leaving beamline component

energy_transfer[i]: NX_FLOAT {units=NX_ENERGY}

Energy change caused by beamline component

incident_wavelength[i]: NX_FLOAT {units=NX_WAVELENGTH}

Wavelength on entering beamline component

incident_wavelength_spread[i]: NX_FLOAT {units=NX_WAVELENGTH}

Wavelength spread FWHM on entering component

incident_beam_divergence[2, j]: NX_FLOAT {units=NX_ANGLE}

Divergence of beam entering this component

final_wavelength[i]: NX_FLOAT {units=NX_WAVELENGTH}

Wavelength on leaving beamline component

3.3. Base Class Definitions 129

https://github.com/nexusformat/definitions/blob/master/base_classes/NXattenuator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

incident_polarization[2, j]: NX_FLOAT {units=NX_ANY}

Polarization vector on entering beamline component

final_polarization[2, j]: NX_FLOAT {units=NX_ANY}

Polarization vector on leaving beamline component

final_wavelength_spread[i]: NX_FLOAT {units=NX_WAVELENGTH}

Wavelength spread FWHM of beam leaving this component

final_beam_divergence[2, j]: NX_FLOAT {units=NX_ANGLE}

Divergence FWHM of beam leaving this component

flux[i]: NX_FLOAT {units=NX_FLUX}

flux incident on beam plane area

(data): NXdata

Distribution of beam with respect to relevant variable e.g. wavelength. This is mainly useful
for simulations which need to store plottable information at each beamline component.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXbeam.nxdl.xml

3.3.4 NXbeam_stop

Status:

base class, extends NXobject, version 1.0

Description:

A class for a beamstop. Beamstops and their positions are important for SANS and SAXS experiments.

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

description: NX_CHAR

description of beamstop

Any of these values: circular | rectangular

size: NX_FLOAT {units=NX_LENGTH}

size of beamstop

x: NX_FLOAT {units=NX_LENGTH}

x position of the beamstop in relation to the detector

y: NX_FLOAT {units=NX_LENGTH}

y position of the beamstop in relation to the detector

distance_to_detector: NX_FLOAT {units=NX_LENGTH}

distance of the beamstop to the detector

status: NX_CHAR

130 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXbeam.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Any of these values: in | out

(geometry): NXgeometry

engineering shape, orientation and position of the beam stop.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXbeam_stop.nxdl.xml

3.3.5 NXbending_magnet

Status:

base class, extends NXobject, version 1.0

Description:

description for a bending magnet

Symbols:

No symbol table

Groups cited: NXdata, NXgeometry

Structure:

critical_energy: NX_FLOAT {units=NX_ENERGY}

bending_radius: NX_FLOAT {units=NX_LENGTH}

magnetic_field: NX_FLOAT {units=NX_CURRENT}

strength of magnetic field of dipole magnets

accepted_photon_beam_divergence: NX_FLOAT {units=NX_LENGTH}

An array of four numbers giving X+, X-, Y+ and Y- half divergence

source_distance_x: NX_FLOAT {units=NX_LENGTH}

Distance of source point from particle beam waist in X (horizontal) direction.

source_distance_y: NX_FLOAT {units=NX_LENGTH}

Distance of source point from particle beam waist in Y (vertical) direction.

divergence_x_plus: NX_FLOAT {units=NX_ANGLE}

Accepted photon beam divergence in X+ (horizontal outboard) direction. Note that diver-
gence_x_plus+divergence_x_minus is the total horizontal beam divergence.

divergence_x_minus: NX_FLOAT {units=NX_ANGLE}

Accepted photon beam divergence in X- (horizontal inboard) direction. Note that diver-
gence_x_plus+divergence_x_minus is the total horizontal beam divergence.

divergence_y_plus: NX_FLOAT {units=NX_ANGLE}

Accepted photon beam divergence in Y+ (vertical upward) direction. Note that diver-
gence_y_plus+divergence_y_minus is the total vertical beam divergence.

divergence_y_minus: NX_FLOAT {units=NX_ANGLE}

Accepted photon beam divergence in Y- (vertical downward) direction. Note that diver-
gence_y_plus+divergence_y_minus is the total vertical beam divergence.

spectrum: NXdata

3.3. Base Class Definitions 131

https://github.com/nexusformat/definitions/blob/master/base_classes/NXbeam_stop.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

bending magnet spectrum

(geometry): NXgeometry

“Engineering” position of bending magnet

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXbending_magnet.nxdl.xml

3.3.6 NXcapillary

Status:

base class, extends NXobject, version 1.0

Description:

This is a dictionary of field names to use for describing a capillary as used in X-ray beamlines. Based on
information provided by Gerd Wellenreuther.

Symbols:

No symbol table

Groups cited: NXdata

Structure:

type: NX_CHAR

Type of the capillary

Any of these values:

• single_bounce

• polycapillary

• conical_capillary

manufacturer: NX_CHAR

The manufacturer of the capillary. This is actually important as it may have an impact on
performance.

maximum_incident_angle: NX_FLOAT {units=NX_ANGLE}

accepting_aperture: NX_FLOAT {units=NX_ANGLE}

working_distance: NX_FLOAT {units=NX_LENGTH}

focal_size: NX_FLOAT

The focal size in FWHM

gain: NXdata

The gain of the capillary as a function of energy

transmission: NXdata

The transmission of the capillary as a function of energy

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXcapillary.nxdl.xml

132 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXbending_magnet.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXcapillary.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.7 NXcharacterization

Status:

base class, extends NXobject, version 1.0

Description:

Note: This base class may be removed in future releases of NXDL. If you have a use for this base class,
please provide a description of your intended use to the NIAC (nexus-committee@nexusformat.org).

Symbols:

No symbol table

Groups cited: none

Structure:

@source: NX_CHAR

If missing, the source file is the current file

@location: NX_CHAR

@mime_type: NX_CHAR

If missing, the source file is NAPI readable

definition: NX_CHAR

@version: NX_CHAR

@URL: NX_CHAR

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXcharacterization.nxdl.xml

3.3.8 NXcollection

Status:

base class, extends NXobject, version 1.0

Description:

Use NXcollection to gather together any set of terms. The original suggestion is to use this as a
container class for the description of a beamline.

For NeXus validation, NXcollection will always generate a warning since it is always an optional
group. Anything (groups, fields, or attributes) placed in an NXcollection group will not be validated.

Symbols:

No symbol table

Groups cited: none

Structure:

beamline: NX_CHAR

name of the beamline for this collection

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXcollection.nxdl.xml

3.3. Base Class Definitions 133

mailto:nexus-committee@nexusformat.org
https://github.com/nexusformat/definitions/blob/master/base_classes/NXcharacterization.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXcollection.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.9 NXcollimator

Status:

base class, extends NXobject, version 1.0

Description:

Template of a beamline collimator.

Symbols:

No symbol table

Groups cited: NXgeometry, NXlog

Structure:

type: NX_CHAR

Any of these values: Soller | radial | oscillating | honeycomb

soller_angle: NX_FLOAT {units=NX_ANGLE}

Angular divergence of Soller collimator

divergence_x: NX_FLOAT {units=NX_ANGLE}

divergence of collimator in local x direction

divergence_y: NX_FLOAT {units=NX_ANGLE}

divergence of collimator in local y direction

frequency: NX_FLOAT {units=NX_FREQUENCY}

Frequency of oscillating collimator

blade_thickness: NX_FLOAT {units=NX_LENGTH}

blade thickness

blade_spacing: NX_FLOAT {units=NX_LENGTH}

blade spacing

absorbing_material: NX_CHAR

name of absorbing material

transmitting_material: NX_CHAR

name of transmitting material

(geometry): NXgeometry

position, shape and size

frequency_log: NXlog

Log of frequency

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXcollimator.nxdl.xml

134 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXcollimator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.10 NXcrystal

Status:

base class, extends NXobject, version 1.0

Description:

Template of a crystal monochromator or analyzer. Permits double bent monochromator comprised of
multiple segments with anisotropic Gaussian mosaic.

If curvatures are set to zero or are absent, array is considered to be flat.

Scattering vector is perpendicular to surface. Crystal is oriented parallel to beam incident on crystal before
rotation, and lies in vertical plane.

Symbols:

These symbols will be used below to coordinate dimensions with the same lengths.

n_comp: number of different unit cells to be described

i: number of wavelengths

Groups cited: NXdata, NXgeometry, NXlog, NXshape

Structure:

usage: NX_CHAR

How this crystal is used. Choices are in the list.

Any of these values:

• Bragg: reflection geometry

• Laue: The chemical formula specified using CIF conventions. Abbreviated version of
CIF standard: * Only recognized element symbols may be used. * Each element symbol
is followed by a ‘count’ number. A count of ‘1’ may be omitted. * A space or parenthesis
must separate each cluster of (element symbol + count). * Where a group of elements is
enclosed in parentheses, the multiplier for the group must follow the closing parentheses.
That is, all element and group multipliers are assumed to be printed as subscripted num-
bers. * Unless the elements are ordered in a manner that corresponds to their chemical
structure, the order of the elements within any group or moiety depends on whether or
not carbon is present. * If carbon is present, the order should be: C, then H, then the other
elements in alphabetical order of their symbol. If carbon is not present, the elements are
listed purely in alphabetic order of their symbol. This is the Hill system used by Chemical
Abstracts. See, for example: http://www.iucr.org/__data/iucr/cif/standard/cifstd15.html,
http://www.cas.org/training/stneasytips/subinforformula1.html, or
http://www.indiana.edu/~cheminfo/courses/471cnfs.html.

type: NX_CHAR

Type or material of monochromating substance. Chemical formula can be specified separately.
Use the “reflection” field to indicate the (hkl) orientation. Use the “d_spacing” field to record
the lattice plane spacing.

This field was changed (2010-11-17) from an enumeration to a string since common usage
showed a wider variety of use than a simple list. These are the items in the list at the time of
the change: PG (Highly Oriented Pyrolytic Graphite) | Ge | Si | Cu | Fe3Si | CoFe | Cu2MnAl
(Heusler) | Multilayer | Diamond.

chemical_formula: NX_CHAR

3.3. Base Class Definitions 135

http://www.iucr.org/__data/iucr/cif/standard/cifstd15.html
http://www.cas.org/training/stneasytips/subinforformula1.html
http://www.indiana.edu/~cheminfo/courses/471cnfs.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The chemical formula specified using CIF conventions. Abbreviated version of CIF standard:

• Only recognized element symbols may be used.

• Each element symbol is followed by a ‘count’ number. A count of ‘1’ may be omitted.

• A space or parenthesis must separate each cluster of (element symbol + count).

• Where a group of elements is enclosed in parentheses, the multiplier for the group must
follow the closing parentheses. That is, all element and group multipliers are assumed to
be printed as subscripted numbers.

• Unless the elements are ordered in a manner that corresponds to their chemical structure,
the order of the elements within any group or moiety depends on whether or not carbon is
present.

• If carbon is present, the order should be: C, then H, then the other elements in alphabetical
order of their symbol. If carbon is not present, the elements are listed purely in alphabetic
order of their symbol.

• This is the Hill system used by Chemical Abstracts.

order_no: NX_INT

A number which describes if this is the first, second,.. nth crystal in a multi crystal monochro-
mator

cut_angle: NX_FLOAT {units=NX_ANGLE}

Cut angle of reflecting Bragg plane and plane of crystal surface

space_group: NX_CHAR

Space group of crystal structure

unit_cell[n_comp, 6]: NX_FLOAT {units=NX_LENGTH}

Unit cell parameters (lengths and angles)

unit_cell_a: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side a

unit_cell_b: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side b

unit_cell_c: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side c

unit_cell_alpha: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle alpha

unit_cell_beta: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle beta

unit_cell_gamma: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle gamma

unit_cell_volume: NX_FLOAT {units=NX_VOLUME}

Volume of the unit cell

orientation_matrix[3, 3]: NX_FLOAT

136 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Orientation matrix of single crystal sample using Busing-Levy convention

wavelength[i]: NX_FLOAT {units=NX_WAVELENGTH}

Optimum diffracted wavelength

d_spacing: NX_FLOAT {units=NX_LENGTH}

spacing between crystal planes of the reflection

scattering_vector: NX_FLOAT {units=NX_WAVENUMBER}

Scattering vector, Q, of nominal reflection

reflection[3]: NX_INT {units=NX_UNITLESS}

Miller indices (hkl) values of nominal reflection

thickness: NX_FLOAT {units=NX_LENGTH}

Thickness of the crystal. (Required for Laue orientations - see “usage” field)

density: NX_NUMBER {units=NX_MASS_DENSITY}

mass density of the crystal

segment_width: NX_FLOAT {units=NX_LENGTH}

Horizontal width of individual segment

segment_height: NX_FLOAT {units=NX_LENGTH}

Vertical height of individual segment

segment_thickness: NX_FLOAT {units=NX_LENGTH}

Thickness of individual segment

segment_gap: NX_FLOAT {units=NX_LENGTH}

Typical gap between adjacent segments

segment_columns: NX_FLOAT {units=NX_LENGTH}

number of segment columns in horizontal direction

segment_rows: NX_FLOAT {units=NX_LENGTH}

number of segment rows in vertical direction

mosaic_horizontal: NX_FLOAT {units=NX_ANGLE}

horizontal mosaic Full Width Half Maximum

mosaic_vertical: NX_FLOAT {units=NX_ANGLE}

vertical mosaic Full Width Half Maximum

curvature_horizontal: NX_FLOAT {units=NX_ANGLE}

Horizontal curvature of focusing crystal

curvature_vertical: NX_FLOAT {units=NX_ANGLE}

Vertical curvature of focusing crystal

is_cylindrical: NX_BOOLEAN

Is this crystal bent cylindrically?

cylindrical_orientation_angle: NX_NUMBER {units=NX_ANGLE}

3.3. Base Class Definitions 137

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

If cylindrical: cylinder orientation angle

polar_angle[i]: NX_FLOAT {units=NX_ANGLE}

Polar (scattering) angle at which crystal assembly is positioned. Note: some instrument ge-
ometries call this term 2theta.

azimuthal_angle[i]: NX_FLOAT {units=NX_ANGLE}

Azimuthal angle at which crystal assembly is positioned

bragg_angle[i]: NX_FLOAT {units=NX_ANGLE}

Bragg angle of nominal reflection

temperature: NX_FLOAT {units=NX_TEMPERATURE}

average/nominal crystal temperature

temperature_coefficient: NX_FLOAT {units=NX_ANY}

how lattice parameter changes with temperature

(geometry): NXgeometry

Position of crystal

temperature_log: NXlog

log file of crystal temperature

reflectivity: NXdata

crystal reflectivity versus wavelength

transmission: NXdata

crystal transmission versus wavelength

shape: NXshape

A NXshape group describing the shape of the crystal arrangement

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXcrystal.nxdl.xml

3.3.11 NXdata

Status:

base class, extends NXobject, version 1.0

Description:

(required) NXdata is a template of plottable data and their dimension scales. It is mandatory that there
is at least one NXdata group in each NXentry group. Note that the variable and data can be defined
with different names. The signal and axes attribute of the data item define which items are plottable
data and which are dimension scales.

• Each NXdata group will consist of only one data set containing plottable data and their standard
deviations.

• This data set may be of arbitrary rank up to a maximum of NX_MAXRANK=32.

• The plottable data will be identified by the attribute: signal=1

• The plottable data will identify the dimension scale specification(s) in the axes attribute.

138 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXcrystal.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

If available, the standard deviations of the data are to be stored in a data set of the same rank and dimen-
sions, with the name errors.

• For each data dimension, there should be a one-dimensional array of the same length.

• These one-dimensional arrays are the dimension scales of the data, i.e. the values of the independent
variables at which the data is measured, such as scattering angle or energy transfer.

There are two methods of linking each data dimension to its respective dimension scale.

The preferred (and recommended) method uses the axes attribute to specify the names of each dimension
scale.

The older method uses the axis attribute on each dimension scale to identify with an integer the axis
whose value is the number of the dimension.

NXdata is used to implement one of the basic motivations in NeXus, to provide a default plot for the
data of this NXentry. The actual data might be stored in another group and (hard) linked to the NXdata
group.

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

dataRank: rank of the data field

n: length of the variable field

nx: length of the x field

ny: length of the y field

nz: length of the z field

Groups cited: none

Structure:

variable[n]: NX_NUMBER

Dimension scale defining an axis of the data. Client is responsible for defining the dimensions
of the data. The name of this field may be changed to fit the circumstances. Standard NeXus
client tools will use the attributes to determine how to use this field.

@long_name: NX_CHAR

Axis label

@distribution: NX_BOOLEAN

0|false: single value, 1|true: multiple values

@first_good: NX_INT

Index of first good value

@last_good: NX_INT

Index of last good value

@axis: NX_POSINT

Index (positive integer) identifying this specific set of numbers. N.B. The axis
attribute is the old way of designating a link. Do not use the axes attribute with the
axis attribute. The axes attribute is now preferred.

variable_errors[n]: NX_NUMBER

3.3. Base Class Definitions 139

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Errors (uncertainties) associated with axis variable Client is responsible for defining the
dimensions of the data. The name of this field may be changed to fit the circumstances but is
matched with the variable field with _errors appended.

data[n]: NX_NUMBER

This field contains the data values to be used as the NeXus plottable data. Client is responsible
for defining the dimensions of the data. The name of this field may be changed to fit the
circumstances. Standard NeXus client tools will use the attributes to determine how to use this
field.

@signal: NX_POSINT

Plottable (independent) axis, indicate index number. Only one field in a NXdata
group may have the signal=1 attribute. Do not use the signal attribute with the
axis attribute.

@axes: NX_CHAR

Defines the names of the dimension scales (independent axes) for this data set as a
colon-delimited array. NOTE: The axes attribute is the preferred method of desig-
nating a link. Do not use the axes attribute with the axis attribute.

@uncertainties: NX_CHAR

Specify the names of the errors (uncertainties) of the dependent axes as plottable data.
NOTE: The errors attribute uses the same syntax as the axes attribute.

@long_name: NX_CHAR

data label

errors[n]: NX_NUMBER

Standard deviations of data values - the data array is identified by the attribute signal=1. The
errors array must have the same dimensions as data. Client is responsible for defining the
dimensions of the data.

scaling_factor: NX_FLOAT

The elements in data are usually float values really. For efficiency reasons these are usually
stored as integers after scaling with a scale factor. This value is the scale factor. It is required
to get the actual physical value, when necessary.

offset: NX_FLOAT

An optional offset to apply to the values in data.

x[nx]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the x-axis of data. The units must be appropriate
for the measurement.

y[ny]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the y-axis of data. The units must be appropriate
for the measurement.

z[nz]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the z-axis of data. The units must be appropriate
for the measurement.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXdata.nxdl.xml

140 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXdata.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.12 NXdetector

Status:

base class, extends NXobject, version 1.1

Description:

Template of a detector, detector bank, or multidetector.

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

np: number of scan points (only present in scanning measurements)

i: number of detector pixels in the first (X, slowest) direction

j: number of detector pixels in the second (Y, faster) direction

k: number of detector pixels in the third (Z, if necessary, fastest) direction

tof: number of bins in the time-of-flight histogram

Groups cited: NXcharacterization, NXcollection, NXdata, NXdetector_module, NXgeometry, NXnote

Structure:

time_of_flight[tof+1]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

Total time of flight

@axis: NX_POSINT

Obligatory value: 3

@primary: NX_POSINT

Obligatory value: 1

@long_name: NX_CHAR

Axis label

@link: NX_CHAR

absolute path to location in NXdetector

raw_time_of_flight[tof+1]: NX_INT {units=NX_PULSES}

In DAQ clock pulses

@frequency: NX_NUMBER

Clock frequency in Hz

detector_number[i, j]: NX_INT

Identifier for detector

data[np, i, j, tof]: NX_NUMBER {units=NX_ANY}

Data values from the detector.

@signal: NX_POSINT

Obligatory value: 1

@axes: NX_CHAR

[number of scan points,x_offset?,y_offset?,time_of_flight?]

3.3. Base Class Definitions 141

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@long_name: NX_CHAR

Title of measurement

@check_sum: NX_INT

Integral of data as check of data integrity

@link: NX_CHAR

absolute path to location in NXdetector

data_error[np, i, j, tof]: NX_NUMBER {units=NX_ANY}

The best estimate of the uncertainty in the data value. Where possible, this should be the
standard deviation, which has the same units as the data.

@units: NX_CHAR

@link: NX_CHAR

absolute path to location in NXdetector

x_pixel_offset[i, j]: NX_FLOAT {units=NX_LENGTH}

Offset from the detector center in x-direction. Can be multidimensional when needed.

@axis: NX_POSINT

Obligatory value: 1

@primary: NX_POSINT

Obligatory value: 1

@long_name: NX_CHAR

Axis label

@link: NX_CHAR

absolute path to location in NXdetector

y_pixel_offset[i, j]: NX_FLOAT {units=NX_LENGTH}

Offset from the detector center in the y-direction. Can be multidimensional when different
values are required for each pixel.

@axis: NX_POSINT

Obligatory value: 2

@primary: NX_POSINT

Obligatory value: 1

@long_name: NX_CHAR

Axis label

distance[np, i, j]: NX_FLOAT {units=NX_LENGTH}

TODO: need documentation

polar_angle[np, i, j]: NX_FLOAT {units=NX_ANGLE}

TODO: need documentation

azimuthal_angle[np, i, j]: NX_FLOAT {units=NX_ANGLE}

TODO: need documentation

142 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

description: NX_CHAR

name/manufacturer/model/etc. information

local_name: NX_CHAR

Local name for the detector

solid_angle[i, j]: NX_FLOAT {units=NX_SOLID_ANGLE}

Solid angle subtended by the detector at the sample

x_pixel_size[i, j]: NX_FLOAT {units=NX_LENGTH}

Size of each detector pixel. If it is scalar all pixels are the same size.

y_pixel_size[i, j]: NX_FLOAT {units=NX_LENGTH}

Size of each detector pixel. If it is scalar all pixels are the same size

dead_time[np, i, j]: NX_FLOAT {units=NX_TIME}

Detector dead time

gas_pressure[i, j]: NX_FLOAT {units=NX_PRESSURE}

Detector gas pressure

detection_gas_path: NX_FLOAT {units=NX_LENGTH}

maximum drift space dimension

crate[i, j]: NX_INT

Crate number of detector

@local_name: NX_CHAR

Equivalent local term

slot[i, j]: NX_INT

Slot number of detector

@local_name: NX_CHAR

Equivalent local term

input[i, j]: NX_INT

Input number of detector

@local_name: NX_CHAR

Equivalent local term

type: NX_CHAR

Description of type such as He3 gas cylinder, He3 PSD, scintillator, fission chamber, propor-
tion counter, ion chamber, ccd, pixel, image plate, CMOS, ...

calibration_date: NX_DATE_TIME

date of last calibration (geometry and/or efficiency) measurements

layout: NX_CHAR

How the detector is represented

Any of these values: point | linear | area

3.3. Base Class Definitions 143

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

count_time[np]: NX_NUMBER {units=NX_TIME}

Elapsed actual counting time

sequence_number[nBrightFrames]: NX_CHAR

In order to properly sort the order of the images taken in (for example) a tomography experi-
ment, a sequence number is stored with each image.

beam_center_x: NX_FLOAT {units=NX_LENGTH}

This is the x position where the direct beam would hit the detector. This is a length, not a pixel
position, and can be outside of the actual detector.

beam_center_y: NX_FLOAT {units=NX_LENGTH}

This is the y position where the direct beam would hit the detector. This is a length, not a pixel
position, and can be outside of the actual detector.

frame_start_number: NX_INT

This is the start number of the first frame of a scan. In PX one often scans a couple of frames on
a give sample, then does something else, then returns to the same sample and scans some more
frames. Each time with a new data file. This number helps concatenating such measurements.

diameter: NX_FLOAT {units=NX_LENGTH}

The diameter of a cylindrical detector

acquisition_mode: NX_CHAR

The acquisition mode of the detector.

Any of these values:

• gated

• triggered

• summed

• event

• histogrammed

angular_calibration_applied: NX_BOOLEAN

True when the angular calibration has been applied in the electronics, false otherwise.

angular_calibration[i, j]: NX_FLOAT

Angular calibration data.

flatfield_applied: NX_BOOLEAN

True when the flat field correction has been applied in the electronics, false otherwise.

flatfield[i, j]: NX_FLOAT

Flat field correction data.

flatfield_error[i, j]: NX_FLOAT

Errors of the flat field correction data.

pixel_mask_applied: NX_BOOLEAN

True when the pixel mask correction has been applied in the electronics, false otherwise.

pixel_mask[i, j]: NX_INT

144 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The 32-bit pixel mask for the detector. Contains a bit field for each pixel to signal dead, blind
or high or otherwise unwanted or undesirable pixels. They have the following meaning:

• bit 0: gap (pixel with no sensor)

• bit 1: dead

• bit 2: under responding

• bit 3: over responding

• bit 4: noisy

• bit 5: -undefined-

• bit 6: pixel is part of a cluster of problematic pixels (bit set in addition to others)

• bit 7: -undefined-

• bit 8: user defined mask (e.g. around beamstop)

• bits 9-30: -undefined-

• bit 31: virtual pixel (corner pixel with interpolated value)

The normal data analysis software would not take pixels into account when a bit in (mask
& 0x00FF) is set. Tag bit in the upper two bytes would indicate special pixel properties
that normally would not be a sole reason to reject the intensity value (unless lower bits are set
as well of course).

countrate_correction__applied: NX_BOOLEAN

True when a count-rate correction has already been applied in the electronics, false otherwise.

bit_depth_readout: NX_INT

How many bits the electronics reads per pixel. With CCD’s and single photon counting detec-
tors, this must not align with traditional integer sizes. This can be 4, 8, 12, 14, 16, ...

detector_readout_time: NX_FLOAT {units=NX_TIME}

Time it takes to read the detector (typically milliseconds). This is important to know for time
resolved experiments.

trigger_delay_time: NX_FLOAT {units=NX_TIME}

Time it takes to start exposure after a trigger signal has been received. This is important to
know for time resolved experiments.

trigger_dead_time: NX_FLOAT {units=NX_TIME}

Time during which no new trigger signal can be accepted. Typically this is the trig-
ger_delay_time + exposure_time + readout_time. This is important to know for time resolved
experiments.

frame_time[NP]: NX_FLOAT {units=NX_TIME}

This is time for each frame. This is exposure_time + readout time.

gain_setting: NX_CHAR

The gain setting of the detector. This influences background etc.

Any of these values: high | standard | fast | auto

saturation_value: NX_INT

3.3. Base Class Definitions 145

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The value at which the detector goes into saturation. Especially common to CCD detectors,
the data is known to be invalid above this value.

number_of_cycles: NX_INT

CCD images are sometimes constructed by summing together multiple short exposures in the
electronics. This reduces background etc. This is the number of short exposures used to sum
images for an image.

sensor_material: NX_CHAR

At times, radiation is not directly sensed by the detector. Rather, the detector might sense the
output from some converter like a scintillator. This is the name of this converter material.

sensor_thickness: NX_FLOAT {units=NX_LENGTH}

At times, radiation is not directly sensed by the detector. Rather, the detector might sense the
output from some converter like a scintillator. This is the thickness of this converter material.

threshold_energy: NX_FLOAT {units=NX_ENERGY}

Single photon counter detectors can be adjusted for a certain energy range in which they work
optimally. This is the energy setting for this.

(geometry): NXgeometry

Position and orientation of detector

efficiency: NXdata

Spectral efficiency of detector with respect to e.g. wavelength

efficiency[i, j, k]: NX_FLOAT {units=NX_DIMENSIONLESS}

efficiency of the detector

wavelength[i, j, k]: NX_FLOAT {units=NX_WAVELENGTH}

TODO: need documentation

start_time[np]: NX_FLOAT {units=NX_TIME}

start time for each frame, with the start attribute as absolute reference

@start: NX_DATE_TIME

stop_time[np]: NX_FLOAT {units=NX_TIME}

stop time for each frame, with the start attribute as absolute reference

@start: NX_DATE_TIME

real_time[i, j, k]: NX_NUMBER {units=NX_TIME}

real-time of the exposure (use this if exposure time varies for each array element,
otherwise use count_time field)

calibration_method: NXnote

summary of conversion of array data to pixels (e.g. polynomial approximations) and location
of details of the calibrations

data_file: NXnote

(characterization): NXcharacterization

deprecated, use NXcollection instead

for more details, see https://github.com/nexusformat/definitions/issues/177

146 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/issues/177

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(collection): NXcollection

Use this group to provide other data related to this NXdetector group.

(detector_module): NXdetector_module

For use in special cases where the data in NXdetector is represented in several parts, each with
a separate geometry.

Use one or more instances of the NXdetector_module group to declare regions of interest or
some other subdivision of a detector.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector.nxdl.xml

3.3.13 NXdetector_group

Status:

base class, extends NXobject, version 1.0

Description:

This class is used to allow a logical grouping of detector elements (e.g. which tube, bank or group of
banks) to be recorded in the file. As well as allowing you to e.g just select the “left” or “east” detectors, it
may also be useful for determining which elements belong to the same PSD tube and hence have e.g. the
same dead time.

For example, if we had “bank1” composed of “tube1”, “tube2” and “tube3” then group_names would be
the string “bank1, bank1/tube1, bank1/tube2,bank1/tube3” group_index would be {1,2,3,4} group_parent
would be {-1,1,1,1}

The mapping array is interpreted as group 1 is a top level group containing groups 2, 3 and 4

A group_index array in NXdetector gives the base group for a detector element.

Symbols:

No symbol table

Groups cited: none

Structure:

group_names: NX_CHAR

Comma separated list of name

group_index[i]: NX_INT

Unique ID for group. A group_index array in NXdetector gives the base group for a detector
element.

group_parent[ref(group_index)]: NX_INT

Index of group parent in the hierarchy: -1 means no parent (i.e. a top level) group

group_type[ref(group_index)]: NX_INT

Code number for group type, e.g. bank=1, tube=2 etc.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector_group.nxdl.xml

3.3. Base Class Definitions 147

https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector_group.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.14 NXdetector_module

Status:

base class, extends NXobject, version 1.0

Description:

This is the description of a detector module. Many detectors consist of multiple smaller modules. Some-
times it is important to know the exact position of such modules. This is the purpose of this group. It is a
child group to NXdetector.

Symbols:

No symbol table

Groups cited: none

Structure:

data_origin: NX_INT

A two value field which gives the index of the start of the modules data in the main area detector
image in the underlying NXdetector module.

data_size: NX_INT

Two values for the size of the module in pixels in each direction.

module_offset: NX_NUMBER {units=NX_LENGTH}

Offset of the module in regards to the origin of the detector in an arbitrary direction.

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_NUMBER

Three values that define the axis for this transformation

@offset: NX_NUMBER

A fixed offset applied before the transformation

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

fast_pixel_direction: NX_NUMBER {units=NX_LENGTH}

Values along the direction of fastest varying pixel direction.The direction itself is given through
the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_NUMBER

Three values that define the axis for this transformation

@offset: NX_NUMBER

A fixed offset applied before the transformation

148 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

slow_pixel_direction: NX_NUMBER {units=NX_LENGTH}

Values along the direction of slow varying pixel direction. The direction itself is given through
the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_NUMBER

Three values that define the axis for this transformation

@offset: NX_NUMBER

A fixed offset applied before the transformation

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

fast_pixel_size: NX_NUMBER {units=NX_LENGTH}

Values along the direction of fastest varying pixel direction.The direction itself is given through
the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_NUMBER

Three values that define the axis for this transformation

@offset: NX_NUMBER

A fixed offset applied before the transformation

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

slow_pixel_size: NX_NUMBER {units=NX_LENGTH}

Values along the direction of slow varying pixel direction. The direction itself is given through
the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_NUMBER

Three values that define the axis for this transformation

3.3. Base Class Definitions 149

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@offset: NX_NUMBER

A fixed offset applied before the transformation

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector_module.nxdl.xml

3.3.15 NXdisk_chopper

Status:

base class, extends NXobject, version 1.0

Description:

TODO: need documentation

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

type: NX_CHAR

Type of the disk-chopper: only one from the enumerated list (match text exactly)

Any of these values:

• Chopper type single

• contra_rotating_pair

• synchro_pair

rotation_speed: NX_FLOAT {units=NX_FREQUENCY}

chopper rotation speed

slits: NX_INT

Number of slits

slit_angle: NX_FLOAT {units=NX_ANGLE}

angular opening

pair_separation: NX_FLOAT {units=NX_LENGTH}

disc spacing in direction of beam

radius: NX_FLOAT {units=NX_LENGTH}

radius to centre of slit

slit_height: NX_FLOAT {units=NX_LENGTH}

total slit height

phase: NX_FLOAT {units=NX_ANGLE}

150 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXdetector_module.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

chopper phase angle

ratio: NX_INT

pulse reduction factor of this chopper in relation to other choppers/fastest pulse in the instru-
ment

distance: NX_FLOAT {units=NX_LENGTH}

Effective distance to the origin

wavelength_range[2]: NX_FLOAT {units=NX_WAVELENGTH}

low and high values of wavelength range transmitted

(geometry): NXgeometry

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXdisk_chopper.nxdl.xml

3.3.16 NXentry

Status:

base class, extends NXobject, version 1.0

Description:

(required) Template of the top-level NeXus group which contains all the data and associated information
that comprise a single measurement. It is mandatory that there is at least one group of this type in the
NeXus file.

Symbols:

No symbol table

Groups cited: NXcharacterization, NXcollection, NXdata, NXinstrument, NXmonitor, NXnote, NXparameters, NX-
process, NXsample, NXsubentry, NXuser

Structure:

@IDF_Version: NX_CHAR

ISIS Muon IDF_Version

title: NX_CHAR

Extended title for entry

experiment_identifier: NX_CHAR

Unique identifier for the experiment, defined by the facility, possibly linked to the proposals

experiment_description: NX_CHAR

Brief summary of the experiment, including key objectives.

collection_identifier: NX_CHAR

User or Data Acquisition defined group of NeXus files or NXentry

collection_description: NX_CHAR

Brief summary of the collection, including grouping criteria.

entry_identifier: NX_CHAR

unique identifier for the measurement, defined by the facility.

3.3. Base Class Definitions 151

https://github.com/nexusformat/definitions/blob/master/base_classes/NXdisk_chopper.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

definition: NX_CHAR

(alternate use: see same field in NXsubentry for preferred)

Official NeXus NXDL schema to which this file conforms.

This field is provided so that NXentry can be the overlay position in a NeXus data file for an
application definition and its set of groups, fields, and attributes.

It is advised to use NXsubentry, instead, as the overlay position.

@version: NX_CHAR

NXDL version number

@URL: NX_CHAR

URL of NXDL file

definition_local: NX_CHAR

(deprecated use: see same field in NXsubentry for preferred) Local NXDL schema extended
from the file specified in the definition field. This contains any locally-defined, additional
fields in the file.

@version: NX_CHAR

NXDL version number

@URL: NX_CHAR

URL of NXDL file

start_time: NX_DATE_TIME

Starting time of measurement

end_time: NX_DATE_TIME

Ending time of measurement

duration: NX_INT {units=NX_TIME}

Duration of measurement

collection_time: NX_FLOAT {units=NX_TIME}

Time transpired actually collecting data i.e. taking out time when collection was suspended
due to e.g. temperature out of range

run_cycle: NX_CHAR

Such as “2007-3”. Some user facilities organize their beam time into run cycles.

program_name: NX_CHAR

Name of program used to generate this file

@version: NX_CHAR

Program version number

@configuration: NX_CHAR

configuration of the program

revision: NX_CHAR

152 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Revision id of the file due to re-calibration, reprocessing, new analysis, new instrument defini-
tion format, ...

@comment: NX_CHAR

pre_sample_flightpath: NX_FLOAT {units=NX_LENGTH}

This is the flightpath before the sample position. This can be determined by a chopper, by the
moderator or the source itself. In other words: it the distance to the component which gives
the T0 signal to the detector electronics. If another component in the NXinstrument hierarchy
provides this information, this should be a link.

(data): NXdata

The required data group

experiment_documentation: NXnote

Description of the full experiment (document in pdf, latex, ...)

notes: NXnote

Notes describing entry

thumbnail: NXnote

A small image that is representative of the entry. An example of this is a 640x480 jpeg image
automatically produced by a low resolution plot of the NXdata.

@mime_type: NX_CHAR

The value should be an image/*

Obligatory value: image/*

(characterization): NXcharacterization

(user): NXuser

(sample): NXsample

(instrument): NXinstrument

(collection): NXcollection

(monitor): NXmonitor

(parameters): NXparameters

(process): NXprocess

(subentry): NXsubentry

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXentry.nxdl.xml

3.3.17 NXenvironment

Status:

base class, extends NXobject, version 1.0

Description:

This class describes an external condition applied to the sample

Symbols:

No symbol table

3.3. Base Class Definitions 153

https://github.com/nexusformat/definitions/blob/master/base_classes/NXentry.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Groups cited: NXgeometry, NXnote, NXsensor

Structure:

name: NX_CHAR

Apparatus identification code/model number; e.g. OC100 011

short_name: NX_CHAR

Alternative short name, perhaps for dashboard display like a present Seblock name

type: NX_CHAR

Type of apparatus. This could be the SE codes in scheduling database; e.g. OC/100

description: NX_CHAR

Description of the apparatus; e.g. 100mm bore orange cryostat with Roots pump

program: NX_CHAR

Program controlling the apparatus; e.g. LabView VI name

position: NXgeometry

The position and orientation of the apparatus

(note): NXnote

Additional information, LabView logs, digital photographs, etc

(sensor): NXsensor

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXenvironment.nxdl.xml

3.3.18 NXevent_data

Status:

base class, extends NXobject, version 1.0

Description:

Time-of-flight events

Symbols:

No symbol table

Groups cited: none

Structure:

time_of_flight[i]: NX_INT {units=NX_TIME_OF_FLIGHT}

A list of time of flight for each event as it comes in. This list is for all pulses with information
to attach to a particular pulse located in events_per_pulse.

pixel_number[i]: NX_INT {units=NX_DIMENSIONLESS}

There will be extra information in the NXdetector to convert pixel_number to detec-
tor_number. This list is for all pulses with information to attach to a particular pulse located in
events_per_pulse.

pulse_time[j]: NX_INT {units=NX_TIME}

154 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXenvironment.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The time that each pulse started with respect to the offset

@offset: NX_DATE_TIME

ISO8601

events_per_pulse[j]: NX_INT {units=NX_DIMENSIONLESS}

This connects the index “i” to the index “j”. The jth element is the number of events in “i” that
occurred during the jth pulse.

pulse_height[i, k]: NX_FLOAT {units=NX_DIMENSIONLESS}

If voltages from the ends of the detector are read out this is where they go. This list is for all
events with information to attach to a particular pulse height. The information to attach to a
particular pulse is located in events_per_pulse.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXevent_data.nxdl.xml

3.3.19 NXfermi_chopper

Status:

base class, extends NXobject, version 1.0

Description:

Description of a Fermi chopper, possibly with curved slits.

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

type: NX_CHAR

Fermi chopper type

rotation_speed: NX_FLOAT {units=NX_FREQUENCY}

chopper rotation speed

radius: NX_FLOAT {units=NX_LENGTH}

radius of chopper

slit: NX_FLOAT {units=NX_LENGTH}

width of an individual slit

r_slit: NX_FLOAT {units=NX_LENGTH}

radius of curvature of slits

number: NX_INT {units=NX_UNITLESS}

number of slits

height: NX_FLOAT {units=NX_LENGTH}

input beam height

width: NX_FLOAT {units=NX_LENGTH}

input beam width

3.3. Base Class Definitions 155

https://github.com/nexusformat/definitions/blob/master/base_classes/NXevent_data.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

distance: NX_FLOAT {units=NX_LENGTH}

distance

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

Wavelength transmitted by chopper

energy: NX_FLOAT {units=NX_ENERGY}

energy selected

absorbing_material: NX_CHAR

absorbing material

transmitting_material: NX_CHAR

transmitting material

(geometry): NXgeometry

geometry of the fermi chopper

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXfermi_chopper.nxdl.xml

3.3.20 NXfilter

Status:

base class, extends NXobject, version 1.0

Description:

Template for specifying the state of band pass filters. If uncertain whether to use NXfilter (band-pass
filter) or NXattenuator (reduces beam intensity), then use NXattenuator.

Symbols:

No symbol table

Groups cited: NXdata, NXgeometry, NXlog, NXsensor

Structure:

description: NX_CHAR

Composition of the filter. Chemical formula can be specified separately.

This field was changed (2010-11-17) from an enumeration to a string since common usage
showed a wider variety of use than a simple list. These are the items in the list at the time of
the change: Beryllium | Pyrolytic Graphite | Graphite | Sapphire | Silicon | Supermirror.

status: NX_CHAR

position with respect to in or out of the beam (choice of only “in” or “out”)

Any of these values:

• in: in the beam

• out: out of the beam

temperature: NX_FLOAT {units=NX_TEMPERATURE}

average/nominal filter temperature

thickness: NX_FLOAT {units=NX_LENGTH}

156 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXfermi_chopper.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Thickness of the filter

density: NX_NUMBER {units=NX_MASS_DENSITY}

mass density of the filter

chemical_formula: NX_CHAR

The chemical formula specified using CIF conventions. Abbreviated version of CIF standard:

• Only recognized element symbols may be used.

• Each element symbol is followed by a ‘count’ number. A count of ‘1’ may be omitted.

• A space or parenthesis must separate each cluster of (element symbol + count).

• Where a group of elements is enclosed in parentheses, the multiplier for the group must
follow the closing parentheses. That is, all element and group multipliers are assumed to
be printed as subscripted numbers.

• Unless the elements are ordered in a manner that corresponds to their chemical structure,
the order of the elements within any group or moiety depends on whether or not carbon is
present.

• If carbon is present, the order should be:

– C, then H, then the other elements in alphabetical order of their symbol.

– If carbon is not present, the elements are listed purely in alphabetic order of their
symbol.

• This is the Hill system used by Chemical Abstracts.

unit_cell_a: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side a

unit_cell_b: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side b

unit_cell_c: NX_FLOAT {units=NX_LENGTH}

Unit cell lattice parameter: length of side c

unit_cell_alpha: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle alpha

unit_cell_beta: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle beta

unit_cell_gamma: NX_FLOAT {units=NX_ANGLE}

Unit cell lattice parameter: angle gamma

unit_cell_volume[n_comp]: NX_FLOAT {units=NX_VOLUME}

Unit cell

orientation_matrix[n_comp, 3, 3]: NX_FLOAT

Orientation matrix of single crystal filter using Busing-Levy convention

m_value: NX_FLOAT {units=NX_DIMENSIONLESS}

m value of supermirror filter

substrate_material: NX_CHAR

3.3. Base Class Definitions 157

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

substrate material of supermirror filter

substrate_thickness: NX_FLOAT {units=NX_LENGTH}

substrate thickness of supermirror filter

coating_material: NX_CHAR

coating material of supermirror filter

substrate_roughness: NX_FLOAT {units=NX_LENGTH}

substrate roughness (RMS) of supermirror filter

coating_roughness[nsurf]: NX_FLOAT {units=NX_LENGTH}

coating roughness (RMS) of supermirror filter

(geometry): NXgeometry

Geometry of the filter

transmission: NXdata

Wavelength transmission profile of filter

temperature_log: NXlog

Linked temperature_log for the filter

sensor_type: NXsensor

Sensor(s)used to monitor the filter temperature

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXfilter.nxdl.xml

3.3.21 NXflipper

Status:

base class, extends NXobject, version 1.0

Description:

Template of a beamline spin flipper.

Symbols:

No symbol table

Groups cited: none

Structure:

type: NX_CHAR

Any of these values: coil | current-sheet

flip_turns: NX_FLOAT {units=NX_PER_LENGTH}

Linear density of turns (such as number of turns/cm) in flipping field coils

comp_turns: NX_FLOAT {units=NX_PER_LENGTH}

Linear density of turns (such as number of turns/cm) in compensating field coils

guide_turns: NX_FLOAT {units=NX_PER_LENGTH}

Linear density of turns (such as number of turns/cm) in guide field coils

158 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXfilter.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

flip_current: NX_FLOAT {units=NX_CURRENT}

Flipping field coil current in “on” state”

comp_current: NX_FLOAT {units=NX_CURRENT}

Compensating field coil current in “on” state”

guide_current: NX_FLOAT {units=NX_CURRENT}

Guide field coil current in “on” state”

thickness: NX_FLOAT {units=NX_LENGTH}

thickness along path of neutron travel

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXflipper.nxdl.xml

3.3.22 NXgeometry

Status:

base class, extends NXobject, version 1.0

Description:

This is the description for a general position of a component. It is recommended to name an instance of
NXgeometry as “geometry” to aid in the use of the definition in simulation codes such as McStas. Also,
in HDF, linked items must share the same name. However, it might not be possible or practical in all
situations.

Symbols:

No symbol table

Groups cited: NXorientation, NXshape, NXtranslation

Structure:

description: NX_CHAR

Optional description/label. Probably only present if we are an additional reference point for
components rather than the location of a real component.

component_index: NX_INT

Position of the component along the beam path. The sample is at 0, components upstream have
negative component_index, components downstream have positive component_index.

(shape): NXshape

shape/size information of component

(translation): NXtranslation

translation of component

(orientation): NXorientation

orientation of component

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXgeometry.nxdl.xml

3.3. Base Class Definitions 159

https://github.com/nexusformat/definitions/blob/master/base_classes/NXflipper.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXgeometry.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.23 NXguide

Status:

base class, extends NXobject, version 1.0

Description:

NXguide is used by neutron instruments to describe a guide consists of several mirrors building a shape
through which neutrons can be guided or directed. The simplest such form is box shaped although ellipti-
cal guides are gaining in popularity. The individual parts of a guide usually have common characteristics
but there are cases where they are different. For example, a neutron guide might consist of 2 or 4 coated
walls or a supermirror bender with multiple, coated vanes.

To describe polarizing supermirrors such as used in neutron reflection, it may be necessary to revise this
definition of NXguide to include NXpolarizer and/or NXmirror.

When even greater complexity exists in the definition of what constitutes a guide, it has been sug-
gested that NXguide be redefined as a NXcollection of NXmirrors each having their own
NXgeometries describing their location(s).

For the more general case when describing mirrors, consider using NXmirror.

NOTE: The NeXus International Advisory Committee welcomes comments for revision and improvement
of this definition of NXguide.

Symbols:

nsurf: number of reflecting surfaces

nwl: number of wavelengths

Groups cited: NXdata, NXgeometry

Structure:

description: NX_CHAR

A description of this particular instance of NXguide.

incident_angle: NX_FLOAT {units=NX_ANGLE}

TODO: documentation needed

bend_angle_x: NX_FLOAT {units=NX_ANGLE}

TODO: documentation needed

bend_angle_y: NX_FLOAT {units=NX_ANGLE}

TODO: documentation needed

interior_atmosphere: NX_CHAR

Any of these values: vacuum | helium | argon

external_material: NX_CHAR

external material outside substrate

m_value[nsurf]: NX_FLOAT

The m value for a supermirror, which defines the supermirror regime in multiples of the critical
angle of Nickel.

substrate_material[nsurf]: NX_FLOAT

TODO: documentation needed

160 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

substrate_thickness[nsurf]: NX_FLOAT {units=NX_LENGTH}

TODO: documentation needed

coating_material[nsurf]: NX_FLOAT

TODO: documentation needed

substrate_roughness[nsurf]: NX_FLOAT {units=NX_LENGTH}

TODO: documentation needed

coating_roughness[nsurf]: NX_FLOAT {units=NX_LENGTH}

TODO: documentation needed

number_sections: NX_INT {units=NX_UNITLESS}

number of substrate sections (also called nsurf as an index in the NXguide specification)

(geometry): NXgeometry

TODO: Explain what this NXgeometry group means. What is intended here?

reflectivity: NXdata

Reflectivity as function of reflecting surface and wavelength

data[nsurf, nwl]: NX_NUMBER

reflectivity of each surface as a function of wavelength

@signal: NX_POSINT

Use signal=1 to indicate that this is the plottable data for NeXus.

Obligatory value: 1

@axes: NX_CHAR

Use axes="surface:wavelength" to indicate the dimension scales
to be used when plotting this data.

Obligatory value: surface:wavelength

surface[nsurf]: NX_NUMBER {units=NX_ANY}

List of surfaces. Probably best to use index numbers but the specification is very
loose.

wavelength[nwl]: NX_NUMBER {units=NX_WAVELENGTH}

wavelengths at which reflectivity was measured

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXguide.nxdl.xml

3.3.24 NXinsertion_device

Status:

base class, extends NXobject, version 1.0

Description:

Description of an insertion device, as in a synchrotron.

Symbols:

No symbol table

3.3. Base Class Definitions 161

https://github.com/nexusformat/definitions/blob/master/base_classes/NXguide.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Groups cited: NXdata, NXgeometry

Structure:

type: NX_CHAR

Any of these values: undulator | wiggler

gap: NX_FLOAT {units=NX_LENGTH}

separation between opposing pairs of magnetic poles

taper: NX_FLOAT {units=NX_ANGLE}

angular of gap difference between upstream and downstream ends of the insertion device

phase: NX_FLOAT {units=NX_ANGLE}

poles: NX_INT {units=NX_UNITLESS}

number of poles

magnetic_wavelength: NX_FLOAT {units=NX_WAVELENGTH}

k: NX_FLOAT {units=NX_DIMENSIONLESS}

beam displacement parameter

length: NX_FLOAT {units=NX_LENGTH}

length of insertion device

power: NX_FLOAT {units=NX_POWER}

total power delivered by insertion device

energy: NX_FLOAT {units=NX_ENERGY}

energy of peak intensity in output spectrum

bandwidth: NX_FLOAT {units=NX_ENERGY}

bandwidth of peak energy

harmonic: NX_INT {units=NX_UNITLESS}

harmonic number of peak

spectrum: NXdata

spectrum of insertion device

(geometry): NXgeometry

“Engineering” position of insertion device

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXinsertion_device.nxdl.xml

3.3.25 NXinstrument

Status:

base class, extends NXobject, version 1.0

Description:

162 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXinsertion_device.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Template of instrument descriptions comprising various beamline components. Each component will
also be a NeXus group defined by its distance from the sample. Negative distances represent beamline
components that are before the sample while positive distances represent components that are after the
sample. This device allows the unique identification of beamline components in a way that is valid for
both reactor and pulsed instrumentation.

Symbols:

No symbol table

Groups cited: NXaperture, NXattenuator, NXbeam_stop, NXbeam, NXbending_magnet, NXcapillary, NXcollection,
NXcollimator, NXcrystal, NXdetector_group, NXdetector, NXdisk_chopper, NXevent_data, NXfermi_chopper,
NXfilter, NXflipper, NXguide, NXinsertion_device, NXmirror, NXmoderator, NXmonochromator, NXpolarizer,
NXpositioner, NXsource, NXvelocity_selector, NXxraylens

Structure:

name: NX_CHAR

Name of instrument

@short_name: NX_CHAR

short name for instrument, perhaps the acronym

(aperture): NXaperture

(attenuator): NXattenuator

(beam): NXbeam

(beam_stop): NXbeam_stop

(bending_magnet): NXbending_magnet

(collimator): NXcollimator

(collection): NXcollection

(capillary): NXcapillary

(crystal): NXcrystal

(detector): NXdetector

(detector_group): NXdetector_group

(disk_chopper): NXdisk_chopper

(event_data): NXevent_data

(fermi_chopper): NXfermi_chopper

(filter): NXfilter

(flipper): NXflipper

(guide): NXguide

(insertion_device): NXinsertion_device

(mirror): NXmirror

(moderator): NXmoderator

(monochromator): NXmonochromator

(polarizer): NXpolarizer

3.3. Base Class Definitions 163

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(positioner): NXpositioner

(source): NXsource

(velocity_selector): NXvelocity_selector

(xraylens): NXxraylens

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXinstrument.nxdl.xml

3.3.26 NXlog

Status:

base class, extends NXobject, version 1.0

Description:

Definition of information that is recorded against time, such as information monitored during the run. It
contains the logged values and the times at which they were measured as elapsed time since a starting
time recorded in ISO8601 format. This method of storing logged data helps to distinguish instances in
which a variable is a dimension scale of the data, in which case it is stored in an NXdata group, and
instances in which it is logged during the run, when it should be stored in an NXlog group. Note: When
using multiple NXlog groups, it is suggested to place them inside a NXcollection group. In such
cases, when NXlog is used in another class, NXcollection/NXlog is then constructed.

Symbols:

No symbol table

Groups cited: none

Structure:

time: NX_FLOAT {units=NX_TIME}

Time of logged entry. The times are relative to the “start” attribute and in the units specified in
the “units” attribute.

@start: NX_DATE_TIME

value: NX_NUMBER {units=NX_ANY}

Array of logged value, such as temperature

raw_value: NX_NUMBER {units=NX_ANY}

Array of raw information, such as thermocouple voltage

description: NX_CHAR

Description of logged value

average_value: NX_FLOAT {units=NX_ANY}

average_value_error: NX_FLOAT {units=NX_ANY}

estimated uncertainty (often used: standard deviation) of average_value

minimum_value: NX_FLOAT {units=NX_ANY}

maximum_value: NX_FLOAT {units=NX_ANY}

duration: NX_FLOAT {units=NX_ANY}

Total time log was taken

164 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXinstrument.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXlog.nxdl.xml

3.3.27 NXmirror

Status:

base class, extends NXobject, version 1.0

Description:

Template of a beamline mirror or supermirror.

Symbols:

No symbol table

Groups cited: NXdata, NXgeometry, NXshape

Structure:

type: NX_CHAR

Any of these values:

• single: mirror with a single material as a reflecting surface

• multi: mirror with stacked, multiple layers as a reflecting surface

description: NX_CHAR

description of this mirror

incident_angle: NX_FLOAT {units=NX_ANGLE}

bend_angle_x: NX_FLOAT {units=NX_ANGLE}

bend_angle_y: NX_FLOAT {units=NX_ANGLE}

interior_atmosphere: NX_CHAR

Any of these values: vacuum | helium | argon

external_material: NX_CHAR

external material outside substrate

m_value: NX_FLOAT {units=NX_UNITLESS}

The m value for a supermirror, which defines the supermirror regime in multiples of the critical
angle of Nickel.

substrate_material: NX_CHAR

substrate_density: NX_FLOAT {units=NX_MASS_DENSITY}

substrate_thickness: NX_FLOAT {units=NX_LENGTH}

coating_material: NX_CHAR

substrate_roughness: NX_FLOAT {units=NX_LENGTH}

coating_roughness: NX_FLOAT {units=NX_LENGTH}

even_layer_material: NX_CHAR

even_layer_density: NX_FLOAT {units=NX_MASS_DENSITY}

odd_layer_material: NX_CHAR

3.3. Base Class Definitions 165

https://github.com/nexusformat/definitions/blob/master/base_classes/NXlog.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

odd_layer_density: NX_FLOAT {units=NX_MASS_DENSITY}

layer_thickness: NX_FLOAT {units=NX_LENGTH}

An array describing the thickness of each layer

(geometry): NXgeometry

reflectivity: NXdata

Reflectivity as function of wavelength

shape: NXshape

A NXshape group describing the shape of the mirror

figure_data: NXdata

Numerical description of the surface figure of the mirror.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXmirror.nxdl.xml

3.3.28 NXmoderator

Status:

base class, extends NXobject, version 1.0

Description:

This is the description for a general moderator

Symbols:

No symbol table

Groups cited: NXdata, NXgeometry, NXlog

Structure:

distance: NX_FLOAT {units=NX_LENGTH}

Effective distance as seen by measuring radiation

type: NX_CHAR

Any of these values:

• H20

• D20

• Liquid H2

• Liquid CH4

• Liquid D2

• Solid D2

• C

• Solid CH4

• Solid H2

poison_depth: NX_FLOAT {units=NX_LENGTH}

coupled: NX_BOOLEAN

166 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXmirror.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

whether the moderator is coupled

coupling_material: NX_CHAR

The material used for coupling. Usually Cd.

poison_material: NX_CHAR

Any of these values: Gd | Cd

temperature: NX_FLOAT {units=NX_TEMPERATURE}

average/nominal moderator temperature

(geometry): NXgeometry

“Engineering” position of moderator

temperature_log: NXlog

log file of moderator temperature

pulse_shape: NXdata

moderator pulse shape

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXmoderator.nxdl.xml

3.3.29 NXmonitor

Status:

base class, extends NXobject, version 1.0

Description:

Template of monitor data. It is similar to the NXdata groups containing monitor data and its associated
dimension scale, e.g. time_of_flight or wavelength in pulsed neutron instruments. However, it may also
include integrals, or scalar monitor counts, which are often used in both in both pulsed and steady-state
instrumentation.

Symbols:

No symbol table

Groups cited: NXgeometry, NXlog

Structure:

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor counts (monitor).

Any of these values: monitor | timer

start_time: NX_DATE_TIME

Starting time of measurement

end_time: NX_DATE_TIME

Ending time of measurement

preset: NX_NUMBER {units=NX_ANY}

preset value for time or monitor

distance: NX_FLOAT {units=NX_LENGTH}

3.3. Base Class Definitions 167

https://github.com/nexusformat/definitions/blob/master/base_classes/NXmoderator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Distance of monitor from sample

range[2]: NX_FLOAT {units=NX_ANY}

Range (X-axis, Time-of-flight, etc.) over which the integral was calculated

integral: NX_NUMBER {units=NX_ANY}

Total integral monitor counts

type: NX_CHAR

Any of these values: Fission Chamber | Scintillator

time_of_flight[ref(efficiency)]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

Time-of-flight

efficiency[ref(i)]: NX_NUMBER {units=NX_DIMENSIONLESS}

Monitor efficiency

data[n]: NX_NUMBER {units=NX_ANY}

Monitor data

The signal and axes attributes take the same definitions as in NXdata:

signal signal=1 means this is the plottable data

axes axes="names" where names are defined as a colon-delimited string within
this attribute in the C-order of the data array

@signal: NX_POSINT

as defined for NXdata

@axes: NX_CHAR

as defined for NXdata

sampled_fraction: NX_FLOAT {units=NX_DIMENSIONLESS}

Proportion of incident beam sampled by the monitor (0<x<1)

count_time: NX_FLOAT {units=NX_TIME}

Elapsed actual counting time, can be an array of size np when scanning. This is not the
difference of the calendar time but the time the instrument was really counting, without pauses
or times lost due beam unavailability

integral_log: NXlog

Time variation of monitor counts

(geometry): NXgeometry

Geometry of the monitor

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXmonitor.nxdl.xml

3.3.30 NXmonochromator

Status:

base class, extends NXobject, version 1.0

Description:

168 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXmonitor.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is a base class for everything which selects a wavelength or energy, be it a monochromator crystal, a
velocity selector, an undulator or whatever.

The expected units are:

• wavelength: angstrom

• energy: eV

Symbols:

No symbol table

Groups cited: NXcrystal, NXdata, NXgeometry, NXvelocity_selector

Structure:

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

wavelength selected

wavelength_error: NX_FLOAT {units=NX_WAVELENGTH}

wavelength standard deviation

energy: NX_FLOAT {units=NX_ENERGY}

energy selected

energy_error: NX_FLOAT {units=NX_ENERGY}

energy standard deviation

distribution: NXdata

geometry: NXgeometry

(crystal): NXcrystal

Use as many crystals as necessary to describe

(velocity_selector): NXvelocity_selector

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXmonochromator.nxdl.xml

3.3.31 NXnote

Status:

base class, extends NXobject, version 1.0

Description:

This class can be used to store additional information in a NeXus file e.g. pictures, movies, audio, addi-
tional text logs

Symbols:

No symbol table

Groups cited: none

Structure:

author: NX_CHAR

Author or creator of note

date: NX_DATE_TIME

3.3. Base Class Definitions 169

https://github.com/nexusformat/definitions/blob/master/base_classes/NXmonochromator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Date note created/added

type: NX_CHAR

Mime content type of note data field e.g. image/jpeg, text/plain, text/html

file_name: NX_CHAR

Name of original file name if note was read from an external source

description: NX_CHAR

Title of an image or other details of the note

data: NX_BINARY

Binary note data - if text, line terminator is [CR][LF].

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXnote.nxdl.xml

3.3.32 NXobject

Status:

base class, extends none, version 1.0

Description:

This is the base object of NeXus

Symbols:

No symbol table

Groups cited: none

Structure:

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXobject.nxdl.xml

3.3.33 NXorientation

Status:

base class, extends NXobject, version 1.0

Description:

This is the description for a general orientation of a component - it is used by the NXgeometry class

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

value[numobj, 6]: NX_FLOAT {units=NX_UNITLESS}

The orientation information is stored as direction cosines. The direction cosines will be be-
tween the local coordinate directions and the reference directions (to origin or relative NXge-
ometry). Calling the local unit vectors (x’,y’,z’) and the reference unit vectors (x,y,z) the six
numbers will be [x’ dot x, x’ dot y, x’ dot z, y’ dot x, y’ dot y, y’ dot z] where “dot” is the

170 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXnote.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXobject.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

scalar dot product (cosine of the angle between the unit vectors). The unit vectors in both the
local and reference coordinates are right-handed and orthonormal.

The pair of groups NXtranslation and NXorientation together describe the position of a com-
ponent.

(geometry): NXgeometry

Link to another object if we are using relative positioning, else absent

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXorientation.nxdl.xml

3.3.34 NXparameters

Status:

base class, extends NXobject, version 1.0

Description:

Container for parameters, usually used in processing or analysis.

Symbols:

No symbol table

Groups cited: none

Structure:

term: NX_CHAR

A parameter (also known as a term) that is used in or results from processing.

@units: NX_CHAR

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXparameters.nxdl.xml

3.3.35 NXpinhole

Status:

base class, extends NXobject, version 1.0

Description:

Template of a simple pinhole. For more complex geometries NXaperture should be used.

Symbols:

No symbol table

Groups cited: none

Structure:

depends_on: NX_CHAR

Points to the path of the last element in the geometry chain that places this object in space.
When followed through that chain is supposed to end at an element depending on ”.” i.e. the
origin of the coordinate system. If desired the location of the slit can also be described relative
to an NXbeam, which will allow a simple description of a non-centred pinhole.

diameter: NX_NUMBER {units=NX_LENGTH}

3.3. Base Class Definitions 171

https://github.com/nexusformat/definitions/blob/master/base_classes/NXorientation.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXparameters.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Size of the circular hole defining the transmitted beam size.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXpinhole.nxdl.xml

3.3.36 NXpolarizer

Status:

base class, extends NXobject, version 1.0

Description:

Template of a beamline spin polarizer. This is a draft and is subject to revision.

Symbols:

No symbol table

Groups cited: none

Structure:

type: NX_CHAR

one of these values: “crystal”, “supermirror”, “3He”

composition: NX_CHAR

description of the composition of the polarizing material

reflection[3]: NX_INT {units=NX_UNITLESS}

[hkl] values of nominal reflection

efficiency: NX_FLOAT {units=NX_DIMENSIONLESS}

polarizing efficiency

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXpolarizer.nxdl.xml

3.3.37 NXpositioner

Status:

base class, extends NXobject, version 1.0

Description:

This group describes a generic positioner such as a motor or piezo-electric transducer. It is used to
document the current information of a piece of beam line equipment. Note: When using multiple
NXpositioner groups, it is suggested to place them inside a NXcollection group. In such
cases, when NXpositioner is used in another class, NXcollection/NXpositioner is then con-
structed.

Symbols:

No symbol table

Groups cited: none

Structure:

name: NX_CHAR

symbolic or mnemonic name (one word)

172 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXpinhole.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXpolarizer.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

description: NX_CHAR

description of positioner

value[n]: NX_NUMBER {units=NX_ANY}

best known value of positioner - need [n] as may be scanned

raw_value[n]: NX_NUMBER {units=NX_ANY}

raw value of positioner - need [n] as may be scanned

target_value[n]: NX_NUMBER {units=NX_ANY}

targeted (commanded) value of positioner - need [n] as may be scanned

tolerance[n]: NX_NUMBER {units=NX_ANY}

maximum allowable difference between target_value and value

soft_limit_min: NX_NUMBER {units=NX_ANY}

minimum allowed limit to set value

soft_limit_max: NX_NUMBER {units=NX_ANY}

maximum allowed limit to set value

velocity: NX_NUMBER {units=NX_ANY}

velocity of the positioner (distance moved per unit time)

acceleration_time: NX_NUMBER {units=NX_ANY}

time to ramp the velocity up to full speed

controller_record: NX_CHAR

Hardware device record, e.g. EPICS process variable, taco/tango ...

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXpositioner.nxdl.xml

3.3.38 NXprocess

Status:

base class, extends NXobject, version 1.0

Description:

Document an event of data processing, reconstruction, or analysis for this data.

Symbols:

No symbol table

Groups cited: NXnote

Structure:

program: NX_CHAR

Name of the program used

version: NX_CHAR

Version of the program used

date: NX_DATE_TIME

3.3. Base Class Definitions 173

https://github.com/nexusformat/definitions/blob/master/base_classes/NXpositioner.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Date and time of processing.

(note): NXnote

The note will contain information about how the data was processed or anything about the data
provenance. The contents of the note can be anything that the processing code can understand,
or simple text.

The name will be numbered to allow for ordering of steps.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXprocess.nxdl.xml

3.3.39 NXroot

Status:

base class, extends NXobject, version 1.0

Description:

Definition of the root NeXus group.

Symbols:

No symbol table

Groups cited: NXentry

Structure:

@NX_class: NX_CHAR

The root of any NeXus data file is an NXroot class (no other choice is allowed for a valid
NeXus data file). This attribute cements that definition.

Obligatory value: NXroot

@file_time: NX_CHAR

Date and time file was originally created

@file_name: NX_CHAR

File name of original NeXus file

@file_update_time: NX_CHAR

Date and time of last file change at close

@NeXus_version: NX_CHAR

Version of NeXus API used in writing the file

@HDF_version: NX_CHAR

Version of NeXus API used in writing the file

@HDF5_Version: NX_CHAR

Version of NeXus API used in writing the file. Note this attribute is spelled with uppercase
“V”, different than other version attributes.

@XML_version: NX_CHAR

Version of NeXus API used in writing the file

@creator: NX_CHAR

174 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXprocess.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

facility or program where file originated

(entry): NXentry

entries

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXroot.nxdl.xml

3.3.40 NXsample

Status:

base class, extends NXobject, version 1.0

Description:

Template of the state of the sample. This could include scanned variables that are associated with one of
the data dimensions, e.g. the magnetic field, or logged data, e.g. monitored temperature vs elapsed time.

Symbols:

symbolic array lengths to be coordinated between various fields

n_comp: number of compositions

n_Temp: number of temperatures

n_eField: number of values in applied electric field

n_mField: number of values in applied magnetic field

n_pField: number of values in applied pressure field

n_sField: number of values in applied stress field

Groups cited: NXbeam, NXdata, NXenvironment, NXgeometry, NXlog, NXpositioner

Structure:

name: NX_CHAR

Descriptive name of sample

chemical_formula: NX_CHAR

The chemical formula specified using CIF conventions. Abbreviated version of CIF standard:

• Only recognized element symbols may be used.

• Each element symbol is followed by a ‘count’ number. A count of ‘1’ may be omitted.

• A space or parenthesis must separate each cluster of (element symbol + count).

• Where a group of elements is enclosed in parentheses, the multiplier for the group must
follow the closing parentheses. That is, all element and group multipliers are assumed to
be printed as subscripted numbers.

• Unless the elements are ordered in a manner that corresponds to their chemical structure,
the order of the elements within any group or moiety depends on whether or not carbon is
present.

• If carbon is present, the order should be:

– C, then H, then the other elements in alphabetical order of their symbol.

– If carbon is not present, the elements are listed purely in alphabetic order of their
symbol.

3.3. Base Class Definitions 175

https://github.com/nexusformat/definitions/blob/master/base_classes/NXroot.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• This is the Hill system used by Chemical Abstracts.

temperature[n_Temp]: NX_FLOAT {units=NX_TEMPERATURE}

Sample temperature. This could be a scanned variable

electric_field[n_eField]: NX_FLOAT {units=NX_VOLTAGE}

Applied electric field

@direction: NX_CHAR

Any of these values: x | y | z

magnetic_field[n_mField]: NX_FLOAT {units=NX_ANY}

Applied magnetic field

@direction: NX_CHAR

Any of these values: x | y | z

stress_field[n_sField]: NX_FLOAT {units=NX_ANY}

Applied external stress field

@direction: NX_CHAR

Any of these values: x | y | z

pressure[n_pField]: NX_FLOAT {units=NX_PRESSURE}

Applied pressure

changer_position: NX_INT {units=NX_UNITLESS}

Sample changer position

unit_cell[n_comp, 6]: NX_FLOAT {units=NX_LENGTH}

Unit cell parameters (lengths and angles)

unit_cell_volume[n_comp]: NX_FLOAT {units=NX_VOLUME}

Volume of the unit cell

sample_orientation[3]: NX_FLOAT {units=NX_ANGLE}

This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967)

orientation_matrix[n_comp, 3, 3]: NX_FLOAT

Orientation matrix of single crystal sample. This will follow the Busing and Levy convention
from Acta.Crysta v22, p457 (1967)

mass[n_comp]: NX_FLOAT {units=NX_MASS}

Mass of sample

density[n_comp]: NX_FLOAT {units=NX_MASS_DENSITY}

Density of sample

relative_molecular_mass[n_comp]: NX_FLOAT {units=NX_MASS}

Relative Molecular Mass of sample

type: NX_CHAR

Any of these values:

176 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• sample

• sample+can

• can

• calibration sample

• normalisation sample

• simulated data

• none

• sample environment

situation: NX_CHAR

The atmosphere will be one of the components, which is where its details will be stored; the
relevant components will be indicated by the entry in the sample_component member.

Any of these values:

• air

• vacuum

• inert atmosphere

• oxidising atmosphere

• reducing atmosphere

• sealed can

• other

description: NX_CHAR

Description of the sample

preparation_date: NX_DATE_TIME

Date of preparation of the sample

component[n_comp]: NX_CHAR

Details of the component of the sample and/or can

sample_component[n_comp]: NX_CHAR

Type of component

Any of these values: sample | can | atmosphere | kit

concentration[n_comp]: NX_FLOAT {units=NX_MASS_DENSITY}

Concentration of each component

volume_fraction[n_comp]: NX_FLOAT

Volume fraction of each component

scattering_length_density[n_comp]: NX_FLOAT {units=NX_SCATTERING_LENGTH_DENSITY}

Scattering length density of each component

unit_cell_class[n_comp]: NX_CHAR

3.3. Base Class Definitions 177

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

In case it is all we know and we want to record/document it

Any of these values:

• cubic

• tetragonal

• orthorhombic

• monoclinic

• triclinic

unit_cell_group[n_comp]: NX_CHAR

Crystallographic point or space group

path_length: NX_FLOAT {units=NX_LENGTH}

Path length through sample/can for simple case when it does not vary with scattering direction

path_length_window: NX_FLOAT {units=NX_LENGTH}

Thickness of a beam entry/exit window on the can (mm) - assumed same for entry and exit

thickness: NX_FLOAT {units=NX_LENGTH}

sample thickness

external_DAC: NX_FLOAT {units=NX_ANY}

value sent to user’s sample setup

short_title: NX_CHAR

20 character fixed length sample description for legends

rotation_angle: NX_FLOAT {units=NX_ANGLE}

Optional rotation angle for the case when the powder diagram has been obtained through an
omega-2theta scan like from a traditional single detector powder diffractometer

x_translation: NX_FLOAT {units=NX_LENGTH}

Translation of the sample along the X-direction of the laboratory coordinate system

distance: NX_FLOAT {units=NX_LENGTH}

Translation of the sample along the Z-direction of the laboratory coordinate system

geometry: NXgeometry

The position and orientation of the center of mass of the sample

(beam): NXbeam

Details of beam incident on sample - used to calculate sample/beam interaction point

transmission: NXdata

As a function of Wavelength

temperature_log: NXlog

temperature_log.value is a link to e.g. temperature_env.sensor1.value_log.value

temperature_env: NXenvironment

Additional sample temperature environment information

178 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

magnetic_field_log: NXlog

magnetic_field_log.value is a link to e.g. magnetic_field_env.sensor1.value_log.value

magnetic_field_env: NXenvironment

Additional sample magnetic environment information

external_ADC: NXlog

logged value (or logic state) read from user’s setup

(positioner): NXpositioner

Any positioner (motor, PZT, ...) used to locate the sample

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXsample.nxdl.xml

3.3.41 NXsensor

Status:

base class, extends NXobject, version 1.0

Description:

This class describes a sensor used to monitor an external condition - the condition itself is described in
NXenvironment

Symbols:

No symbol table

Groups cited: NXgeometry, NXlog, NXorientation

Structure:

model: NX_CHAR

Sensor identification code/model number

name: NX_CHAR

Name for the sensor

short_name: NX_CHAR

Short name of sensor used e.g. on monitor display program

attached_to: NX_CHAR

where sensor is attached to (“sample” | “can”)

measurement: NX_CHAR

name for measured signal

Any of these values:

• temperature

• pH

• magnetic_field

• electric_field

• conductivity

3.3. Base Class Definitions 179

https://github.com/nexusformat/definitions/blob/master/base_classes/NXsample.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• resistance

• voltage

• pressure

• flow

• stress

• strain

• shear

• surface_pressure

type: NX_CHAR

The type of hardware used for the measurement. Examples (suggestions but not restrictions):

Temperature J | K | T | E | R | S | Pt100 | Rh/Fe

pH Hg/Hg2Cl2 | Ag/AgCl | ISFET

Ion selective electrode specify species; e.g. Ca2+

Magnetic field Hall

Surface pressure wilhelmy plate

run_control: NX_BOOLEAN

Is data collection controlled or synchronised to this quantity: 1=no, 0=to “value”, 1=to
“value_deriv1”, etc.

high_trip_value: NX_FLOAT {units=NX_ANY}

Upper control bound of sensor reading if using run_control

low_trip_value: NX_FLOAT {units=NX_ANY}

Lower control bound of sensor reading if using run_control

value[n]: NX_FLOAT {units=NX_ANY}

nominal setpoint or average value - need [n] as may be a vector

value_deriv1[ref(value)]: NX_FLOAT {units=NX_ANY}

Nominal/average first derivative of value e.g. strain rate - same dimensions as “value” (may be
a vector)

value_deriv2[ref(value)]: NX_FLOAT {units=NX_ANY}

Nominal/average second derivative of value - same dimensions as “value” (may be a vector)

external_field_brief: NX_CHAR

Any of these values:

• along beam

• across beam

• transverse

• solenoidal

• flow shear gradient

• flow vorticity

180 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

geometry: NXgeometry

Defines the axes for logged vector quantities if they are not the global instrument axes

value_log: NXlog

Time history of sensor readings

value_deriv1_log: NXlog

Time history of first derivative of sensor readings

value_deriv2_log: NXlog

Time history of second derivative of sensor readings

external_field_full: NXorientation

For complex external fields not satisfied by External_field_brief

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXsensor.nxdl.xml

3.3.42 NXshape

Status:

base class, extends NXobject, version 1.0

Description:

This is the description of the general shape and size of a component, which may be made up of numobj
separate elements - it is used by the NXgeometry class

Symbols:

No symbol table

Groups cited: none

Structure:

shape: NX_CHAR

general shape of a component

Any of these values:

• nxflat

• nxcylinder

• nxbox

• nxsphere

• nxcone

• nxelliptical

• nxtoroidal

• nxparabolic

• nxpolynomial

size[numobj, nshapepar]: NX_FLOAT {units=NX_LENGTH}

3.3. Base Class Definitions 181

https://github.com/nexusformat/definitions/blob/master/base_classes/NXsensor.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

physical extent of the object along its local axes (after NXorientation) with the center of mass
at the local origin (after NXtranslation). The meaning and location of these axes will vary
according to the value of the “shape” variable. nshapepar defines how many parameters:

• For “nxcylinder” type the parameters are (diameter,height) and a three value orientation
vector of the cylinder.

• For the “nxbox” type the parameters are (length,width,height).

• For the “nxsphere” type the parameters are (diameter).

• For nxcone cone half aperture

• For nxelliptical, semi-major axis, semi-minor-axis, angle of major axis and pole

• For nxtoroidal, major radius, minor radius

• For nxparabolic, parabolic parameter a

• For nxpolynomial, an array of polynom coefficients, the dimension of the array encodes
the degree of the polynom

direction: NX_CHAR

Any of these values: concave | convex

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXshape.nxdl.xml

3.3.43 NXslit

Status:

base class, extends NXobject, version 1.0

Description:

Template of a simple slit. For more complex geometries NXaperture should be used.

Symbols:

No symbol table

Groups cited: none

Structure:

depends_on: NX_CHAR

Points to the path of the last element in the geometry chain that places this object in space.
When followed through that chain is supposed to end at an element depending on ”.” i.e. the
origin of the coordinate system. If desired the location of the slit can also be described relative
to an NXbeam, which will allow a simple description of a non-centred slit.

x_gap: NX_NUMBER {units=NX_LENGTH}

Size of the gap opening in the first dimension of the local coordinate system.

y_gap: NX_NUMBER {units=NX_LENGTH}

Size of the gap opening in the second dimension of the local coordinate system.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXslit.nxdl.xml

182 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXshape.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXslit.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.44 NXsource

Status:

base class, extends NXobject, version 1.0

Description:

Template of the neutron or x-ray source, insertion devices and/or moderators.

Symbols:

No symbol table

Groups cited: NXdata, NXgeometry, NXnote

Structure:

distance: NX_FLOAT {units=NX_LENGTH}

Effective distance from sample Distance as seen by radiation from sample. This number should
be negative to signify that it is upstream of the sample.

name: NX_CHAR

Name of source

@short_name: NX_CHAR

short name for source, perhaps the acronym

type: NX_CHAR

type of radiation source (pick one from the enumerated list and spell exactly)

Any of these values:

• Spallation Neutron Source

• Pulsed Reactor Neutron Source

• Reactor Neutron Source

• Synchrotron X-ray Source

• Pulsed Muon Source

• Rotating Anode X-ray

• Fixed Tube X-ray

• UV Laser

• Free-Electron Laser

• Optical Laser

• Ion Source

• UV Plasma Source

probe: NX_CHAR

type of radiation probe (pick one from the enumerated list and spell exactly)

Any of these values:

• neutron

• x-ray

3.3. Base Class Definitions 183

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• muon

• electron

• ultraviolet

• visible light

• positron

• proton

power: NX_FLOAT {units=NX_POWER}

Source power

emittance_x: NX_FLOAT {units=NX_EMITTANCE}

Source emittance (nm-rad) in X (horizontal) direction.

emittance_y: NX_FLOAT {units=NX_EMITTANCE}

Source emittance (nm-rad) in Y (horizontal) direction.

sigma_x: NX_FLOAT {units=NX_LENGTH}

particle beam size in x

sigma_y: NX_FLOAT {units=NX_LENGTH}

particle beam size in y

flux: NX_FLOAT {units=NX_FLUX}

Source intensity/area (example: s-1 cm-2)

energy: NX_FLOAT {units=NX_ENERGY}

Source energy. For storage rings, this would be the particle beam energy. For X-ray tubes, this
would be the excitation voltage.

current: NX_FLOAT {units=NX_CURRENT}

Accelerator, X-ray tube, or storage ring current

voltage: NX_FLOAT {units=NX_VOLTAGE}

Accelerator voltage

frequency: NX_FLOAT {units=NX_FREQUENCY}

Frequency of pulsed source

period: NX_FLOAT {units=NX_PERIOD}

Period of pulsed source

target_material: NX_CHAR

Pulsed source target material

Any of these values:

• Ta

• W

• depleted_U

• enriched_U

184 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• Hg

• Pb

• C

number_of_bunches: NX_INT

For storage rings, the number of bunches in use.

bunch_length: NX_FLOAT {units=NX_TIME}

For storage rings, temporal length of the bunch

bunch_distance: NX_FLOAT {units=NX_TIME}

For storage rings, time between bunches

pulse_width: NX_FLOAT {units=NX_TIME}

temporal width of source pulse

mode: NX_CHAR

source operating mode

Any of these values:

• Single Bunch: for storage rings

• Multi Bunch: for storage rings

top_up: NX_BOOLEAN

Is the synchrotron operating in top_up mode?

last_fill: NX_NUMBER {units=NX_CURRENT}

For storage rings, the current at the end of the most recent injection.

@time: NX_DATE_TIME

date and time of the most recent injection.

notes: NXnote

any source/facility related messages/events that occurred during the experiment

bunch_pattern: NXdata

For storage rings, description of the bunch pattern. This is useful to describe irregular bunch
patterns.

title: NX_CHAR

name of the bunch pattern

pulse_shape: NXdata

source pulse shape

geometry: NXgeometry

“Engineering” location of source

distribution: NXdata

The wavelength or energy distribution of the source

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXsource.nxdl.xml

3.3. Base Class Definitions 185

https://github.com/nexusformat/definitions/blob/master/base_classes/NXsource.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.45 NXsubentry

Status:

base class, extends NXobject, version 1.0

Description:

NXsubentry is a base class virtually identical to NXentry and is used as the (overlay) location for
application definitions. Use a separate NXsubentry for each application definition.

To use NXsubentry with a hypothetical application definition called NXmyappdef:

• Create a group with attribute NX_class="NXsubentry"

• Within that group, create a field called definition="NXmyappdef".

• There are two optional attributes of definition: version and URL

The intended use is to define application definitions for a multi-technique NXentry. Previously, an appli-
cation definition replaced NXentrywith its own definition. With the increasing popularity of instruments
combining multiple techniques for data collection (such as SAXS/WAXS instruments), it was recognized
the application definitions must be entered in the NeXus data file tree as children of NXentry.

Symbols:

No symbol table

Groups cited: NXcharacterization, NXcollection, NXdata, NXinstrument, NXmonitor, NXnote, NXparameters, NX-
process, NXsample, NXuser

Structure:

@IDF_Version: NX_CHAR

ISIS Muon IDF_Version

title: NX_CHAR

Extended title for entry

experiment_identifier: NX_CHAR

Unique identifier for the experiment, defined by the facility, possibly linked to the proposals

experiment_description: NX_CHAR

Brief summary of the experiment, including key objectives.

collection_identifier: NX_CHAR

User or Data Acquisition defined group of NeXus files or NXentry

collection_description: NX_CHAR

Brief summary of the collection, including grouping criteria.

entry_identifier: NX_CHAR

unique identifier for the measurement, defined by the facility.

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

@version: NX_CHAR

NXDL version number

186 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

@URL: NX_CHAR

URL of NXDL file

definition_local: NX_CHAR

Local NXDL schema extended from the file specified in the definition field. This contains
any locally-defined, additional fields in the file.

@version: NX_CHAR

NXDL version number

@URL: NX_CHAR

URL of NXDL file

start_time: NX_DATE_TIME

Starting time of measurement

end_time: NX_DATE_TIME

Ending time of measurement

duration: NX_INT {units=NX_TIME}

Duration of measurement

collection_time: NX_FLOAT {units=NX_TIME}

Time transpired actually collecting data i.e. taking out time when collection was suspended
due to e.g. temperature out of range

run_cycle: NX_CHAR

Such as “2007-3”. Some user facilities organize their beam time into run cycles.

program_name: NX_CHAR

Name of program used to generate this file

@version: NX_CHAR

Program version number

@configuration: NX_CHAR

configuration of the program

revision: NX_CHAR

Revision id of the file due to re-calibration, reprocessing, new analysis, new instrument defini-
tion format, ...

@comment: NX_CHAR

pre_sample_flightpath: NX_FLOAT {units=NX_LENGTH}

This is the flightpath before the sample position. This can be determined by a chopper, by the
moderator or the source itself. In other words: it the distance to the component which gives
the T0 signal to the detector electronics. If another component in the NXinstrument hierarchy
provides this information, this should be a link.

experiment_documentation: NXnote

Description of the full experiment (document in pdf, latex, ...)

notes: NXnote

3.3. Base Class Definitions 187

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Notes describing entry

thumbnail: NXnote

A small image that is representative of the entry. An example of this is a 640x480 jpeg image
automatically produced by a low resolution plot of the NXdata.

@mime_type: NX_CHAR

The value should be an image/*

Obligatory value: image/*

(characterization): NXcharacterization

(user): NXuser

(sample): NXsample

(instrument): NXinstrument

(collection): NXcollection

(monitor): NXmonitor

(data): NXdata

(parameters): NXparameters

(process): NXprocess

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXsubentry.nxdl.xml

3.3.46 NXtranslation

Status:

base class, extends NXobject, version 1.0

Description:

This is the description for the general spatial location of a component - it is used by the NXgeometry class

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

distances[numobj, 3]: NX_FLOAT {units=NX_LENGTH}

(x,y,z) This field describes the lateral movement of a component. The pair of groups NXtrans-
lation and NXorientation together describe the position of a component. For absolute position,
the origin is the scattering center (where a perfectly aligned sample would be) with the z-axis
pointing downstream and the y-axis pointing gravitationally up. For a relative position the
NXtranslation is taken into account before the NXorientation. The axes are right-handed and
orthonormal.

geometry: NXgeometry

Link to other object if we are relative, else absent

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXtranslation.nxdl.xml

188 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXsubentry.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/base_classes/NXtranslation.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3.47 NXuser

Status:

base class, extends NXobject, version 1.0

Description:

Template of user’s contact information. The format allows more than one user with the same affiliation
and contact information, but a second NXuser group should be used if they have different affiliations, etc.

Symbols:

No symbol table

Groups cited: none

Structure:

name: NX_CHAR

Name of user responsible for this entry

role: NX_CHAR

Role of user responsible for this entry. Suggested roles are “local_contact”, “princi-
pal_investigator”, and “proposer”

affiliation: NX_CHAR

Affiliation of user

address: NX_CHAR

Address of user

telephone_number: NX_CHAR

Telephone number of user

fax_number: NX_CHAR

Fax number of user

email: NX_CHAR

Email of user

facility_user_id: NX_CHAR

facility based unique identifier for this person e.g. their identification code on the facility
address/contact database

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXuser.nxdl.xml

3.3.48 NXvelocity_selector

Status:

base class, extends NXobject, version 1.0

Description:

This is the description for a (typically neutron) velocity selector

Symbols:

3.3. Base Class Definitions 189

https://github.com/nexusformat/definitions/blob/master/base_classes/NXuser.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

No symbol table

Groups cited: NXgeometry

Structure:

type: NX_CHAR

velocity selector type

rotation_speed: NX_FLOAT {units=NX_FREQUENCY}

velocity selector rotation speed

radius: NX_FLOAT {units=NX_LENGTH}

radius at beam centre

spwidth: NX_FLOAT {units=NX_LENGTH}

spoke width at beam centre

length: NX_FLOAT {units=NX_LENGTH}

rotor length

num: NX_INT {units=NX_UNITLESS}

number of spokes/lamella

twist: NX_FLOAT {units=NX_ANGLE}

twist angle along axis

table: NX_FLOAT {units=NX_ANGLE}

offset vertical angle

height: NX_FLOAT {units=NX_LENGTH}

input beam height

width: NX_FLOAT {units=NX_LENGTH}

input beam width

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

wavelength

wavelength_spread: NX_FLOAT {units=NX_WAVELENGTH}

deviation FWHM /Wavelength

geometry: NXgeometry

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXvelocity_selector.nxdl.xml

3.3.49 NXxraylens

Status:

base class, extends NXobject, version 1.0

Description:

This is a dictionary of field names to use for describing a X-ray lens as used at synchrotron beam lines.
Based on information provided by Gerd Wellenreuther.

190 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXvelocity_selector.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Symbols:

No symbol table

Groups cited: NXnote

Structure:

lens_geometry: NX_CHAR

Geometry of the lens

Any of these values:

• paraboloid

• spherical

• elliptical

• hyperbolical

symmetric: NX_BOOLEAN

Is the device symmetric?

cylindrical: NX_BOOLEAN

Is the device cylindrical?

focus_type: NX_CHAR

The type of focus of the lens

Any of these values: line | point

lens_thickness: NX_FLOAT {units=NX_LENGTH}

Thickness of the lens

lens_length: NX_FLOAT {units=NX_LENGTH}

Length of the lens

curvature: NX_FLOAT {units=NX_LENGTH}

Radius of the curvature as measured in the middle of the lens

aperture: NX_FLOAT {units=NX_LENGTH}

Diameter or radius of the lens.

number_of_lenses: NX_INT

Number of lenses that make up the compound lens.

lens_material: NX_CHAR

Material used to make the lens.

gas: NX_CHAR

Gas used to fill the lens

gas_pressure: NX_FLOAT {units=NX_PRESSURE}

Gas pressure in the lens

cylinder_orientation: NXnote

Orientation of the cylinder axis.

3.3. Base Class Definitions 191

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/base_classes/NXxraylens.nxdl.xml

3.4 Application Definitions

A description of each NeXus application definition is given. NeXus application definitions define the minimum set of
terms that must be used in an instance of that class. Consider the application definitions as a contract between a data
provider (such as the beam line control system) and a data consumer (such as a data analysis program for a scientific
technique) that describes the information is certain to be available in a data file.

3.4.1 NXarchive

Status:

application definition, extends NXobject, version 1.0b

Description:

This is a definition for data to be archived by ICAT (http://www.icatproject.org/).

Symbols:

No symbol table

Groups cited: NXentry, NXinstrument, NXsample, NXsource, NXuser

Structure:

entry: NXentry

@index: NX_CHAR

title: NX_CHAR

experiment_identifier: NX_CHAR

unique identifier for the experiment

experiment_description: NX_CHAR

Brief description of the experiment and its objectives

collection_identifier: NX_CHAR

ID of user or DAQ define group of data files

collection_description: NX_CHAR

Brief summary of the collection, including grouping criteria

entry_identifier: NX_CHAR

unique identifier for this measurement as provided by the facility

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

duration: NX_FLOAT {units=NX_TIME}

TODO: needs documentation

collection_time: NX_FLOAT {units=NX_TIME}

TODO: needs documentation

192 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/base_classes/NXxraylens.nxdl.xml
http://www.icatproject.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

run_cycle: NX_CHAR

TODO: needs documentation

revision: NX_CHAR

revision ID of this file, may be after recalibration, reprocessing etc.

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXarchive

program: NX_CHAR

The program and version used for generating this file

@version: NX_CHAR

release_date: NX_CHAR {units=NX_TIME}

when this file is to be released into PD

user: NXuser

name: NX_CHAR

role: NX_CHAR

role of the user

facility_user_id: NX_CHAR

ID of the user in the facility burocracy database

instrument: NXinstrument

name: NX_CHAR

description: NX_CHAR

Brief description of the instrument

(source): NXsource

type: NX_CHAR

Any of these values:

• Spallation Neutron Source

• Pulsed Reactor Neutron Source

• Reactor Neutron Source

• Synchrotron X-Ray Source

• Pulsed Muon Source

• Rotating Anode X-Ray

• Fixed Tube X-Ray

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

sample: NXsample

3.4. Application Definitions 193

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

name: NX_CHAR

Descriptive name of sample

sample_id: NX_CHAR

Unique database id of the sample

description: NX_CHAR

type: NX_CHAR

Any of these values:

• sample

• sample+can

• calibration sample

• normalisation sample

• simulated data

• none

• sample_environment

chemical_formula: NX_CHAR

Chemical formula formatted according to CIF conventions

preparation_date: NX_CHAR {units=NX_TIME}

situation: NX_CHAR

Description of the environment the sample is in: air, vacuum, oxidizing at-
mosphere, dehydrated, etc.

temperature: NX_FLOAT {units=NX_TEMPERATURE}

magnetic_field: NX_FLOAT {units=NX_CURRENT}

electric_field: NX_FLOAT {units=NX_VOLTAGE}

stress_field: NX_FLOAT {units=NX_UNITLESS}

pressure: NX_FLOAT {units=NX_PRESSURE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXarchive.nxdl.xml

3.4.2 NXdirecttof

Status:

application definition, extends NXtofraw, version 1.0b

Description:

This is a application definition for raw data from a direct geometry TOF spectrometer

Symbols:

No symbol table

Groups cited: NXentry, NXfermi_chopper, NXinstrument

Structure:

194 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXarchive.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXdirecttof

(instrument): NXinstrument

fermi_chopper: NXfermi_chopper

rotation_speed: NX_FLOAT {units=NX_FREQUENCY}

chopper rotation speed

energy: NX_FLOAT {units=NX_ENERGY}

energy selected

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXdirecttof.nxdl.xml

3.4.3 NXfluo

Status:

application definition, extends NXobject, version 1.0

Description:

This is an application definition for raw data from an X-ray fluorescence experiment

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXmonochromator, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms.

Obligatory value: NXfluo

(instrument): NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Obligatory value: x-ray

monochromator: NXmonochromator

3.4. Application Definitions 195

https://github.com/nexusformat/definitions/blob/master/applications/NXdirecttof.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

wavelength: NX_FLOAT

fluorescence: NXdetector

data[nenergy]: NX_INT

energy[nenergy]: NX_FLOAT

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data: NX_INT

data: NXdata

energy –> /entry/instrument/fluorecence/energy

data –> /entry/instrument/fluorecence/data

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXfluo.nxdl.xml

3.4.4 NXindirecttof

Status:

application definition, extends NXtofraw, version 1.0b

Description:

This is a application definition for raw data from a direct geometry TOF spectrometer

Symbols:

No symbol table

Groups cited: NXentry, NXinstrument, NXmonochromator

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXindirecttof

(instrument): NXinstrument

196 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXfluo.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

analyser: NXmonochromator

energy[nDet]: NX_FLOAT {units=NX_ENERGY}

analyzed energy

polar_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

polar angle towards sample

distance[ndet]: NX_FLOAT {units=NX_LENGTH}

distance from sample

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXindirecttof.nxdl.xml

3.4.5 NXiqproc

Status:

application definition, extends NXobject, version 1.0b

Description:

Application definition for any I(Q) data.

Symbols:

No symbol table

Groups cited: NXdata, NXentry, NXinstrument, NXparameters, NXprocess, NXsample, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

title: NX_CHAR

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXiqproc

instrument: NXinstrument

name: NX_CHAR

Name of the instrument from which this data was reduced.

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

reduction: NXprocess

3.4. Application Definitions 197

https://github.com/nexusformat/definitions/blob/master/applications/NXindirecttof.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

program: NX_CHAR

version: NX_CHAR

input: NXparameters

Input parameters for the reduction program used

filenames: NX_CHAR

Raw data files used to generate this I(Q)

output: NXparameters

Eventual output parameters from the data reduction program used

(data): NXdata

data[NE, NQX, NQY]: NX_INT

This is I(Q). The client has to analyse the dimensions of I(Q). Often, multiple
I(Q) for various environment conditions are measured; that would be the
first dimension. Q can be multidimensional, this accounts for the further
dimensions in the data

variable[NE]: NX_CHAR

@varied_variable: NX_CHAR

The real name of the varied variable in the first dim of data, temperature,
P, MF etc...

qx[NQX]: NX_CHAR

Values for the first dimension of Q

qy[NQY]: NX_CHAR

Values for the second dimension of Q

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXiqproc.nxdl.xml

3.4.6 NXlauetof

Status:

application definition, extends NXobject, version 1.0b

Description:

This is the application definition for a TOF laue diffractometer

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXlauetof

198 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXiqproc.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

instrument: NXinstrument

detector: NXdetector

This assumes a planar 2D detector. All angles and distances refer to the
center of the detector.

polar_angle: NX_FLOAT {units=NX_ANGLE}

The polar_angle (two theta) where the detector is placed.

azimuthal_angle: NX_FLOAT {units=NX_ANGLE}

The azimuthal angle where the detector is placed.

data[number of x pixels, number of y pixels, nTOF]: NX_INT

@signal: NX_POSINT

Obligatory value: 1

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

distance: NX_FLOAT {units=NX_LENGTH}

time_of_flight[nTOF]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

sample: NXsample

name: NX_CHAR

Descriptive name of sample

orientation_matrix[3, 3]: NX_FLOAT

The orientation matrix according to Busing and Levy conventions. This is
not strictly necessary as the UB can always be derived from the data. But let
us bow to common usage which includes thie UB nearly always.

unit_cell[6]: NX_FLOAT

The unit cell, a, b, c, alpha, beta, gamma. Again, not strictly necessary, but
normally written.

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor counts
(monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data[nTOF]: NX_INT

use these attributes primary=1 signal=1

time_of_flight[nTOF]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

name: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

3.4. Application Definitions 199

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXlauetof.nxdl.xml

3.4.7 NXmonopd

Status:

application definition, extends NXobject, version 1.0b

Description:

Monochromatic Neutron and X-Ray Powder Diffraction. Instrument definition for a powder diffractome-
ter at a monochromatic neutron or X-ray beam. This is both suited for a powder diffractometer with a
single detector or a powder diffractometer with a position sensitive detector.

Symbols:

No symbol table

Groups cited: NXcrystal, NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXmonopd

(instrument): NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

(crystal): NXcrystal

wavelength[i]: NX_FLOAT {units=NX_WAVELENGTH}

Optimum diffracted wavelength

(detector): NXdetector

polar_angle[ndet]: NX_FLOAT

where ndet = number of detectors

data[ndet]: NX_INT

detector signal (usually counts) are already corrected for detector effi-
ciency

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

200 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXlauetof.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

rotation_angle: NX_FLOAT {units=NX_ANGLE}

Optional rotation angle for the case when the powder diagram has been ob-
tained through an omega-2theta scan like from a traditional single detector
powder diffractometer

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

integral: NX_FLOAT {units=NX_ANY}

Total integral monitor counts

(data): NXdata

polar_angle –> /NXentry/NXinstrument/NXdetector/polar_angle

Link to polar angle in /NXentry/NXinstrument/NXdetector

data –> /NXentry/NXinstrument/NXdetector/data

Link to data in /NXentry/NXinstrument/NXdetector

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXmonopd.nxdl.xml

3.4.8 NXrefscan

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for a monochromatic scanning reflectometer. It does not have the infor-
mation to calculate the resolution since it does not have any apertures.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXmonochromator, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXrefscan

3.4. Application Definitions 201

https://github.com/nexusformat/definitions/blob/master/applications/NXmonopd.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

instrument: NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

monochromator: NXmonochromator

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

(detector): NXdetector

data[NP]: NX_INT

polar_angle[NP]: NX_FLOAT {units=NX_ANGLE}

sample: NXsample

name: NX_CHAR

Descriptive name of sample

rotation_angle[NP]: NX_FLOAT {units=NX_ANGLE}

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data[NP]: NX_FLOAT {units=NX_ANY}

Monitor counts for each step

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

rotation_angle –> /NXentry/NXsample/rotation_angle

polar_angle –> /NXentry/NXinstrument/NXdetector/polar_angle

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXrefscan.nxdl.xml

3.4.9 NXreftof

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for raw data from a TOF reflectometer.

Symbols:

202 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXrefscan.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

No symbol table

Groups cited: NXdata, NXdetector, NXdisk_chopper, NXentry, NXinstrument, NXmonitor, NXsample

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXreftof

instrument: NXinstrument

name: NX_CHAR

chopper: NXdisk_chopper

distance: NX_FLOAT {units=NX_LENGTH}

Distance between chopper and sample

detector: NXdetector

data[xsize, ysize, nTOF]: NX_INT

time_of_flight[nTOF]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

Array of time values for each bin in a time-of-flight measurement

distance: NX_FLOAT {units=NX_LENGTH}

polar_angle: NX_FLOAT {units=NX_ANGLE}

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

sample: NXsample

name: NX_CHAR

Descriptive name of sample

rotation_angle: NX_FLOAT {units=NX_ANGLE}

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT {units=NX_ANY}

preset value for time or monitor

integral: NX_INT

Total integral monitor counts

3.4. Application Definitions 203

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

time_of_flight: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

Time channels

data: NX_INT

Monitor counts in each time channel

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

time_binning –> /NXentry/NXinstrument/NXdetector/time_binning

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXreftof.nxdl.xml

3.4.10 NXsas

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for raw data (not processed or reduced data) from a 2-D small angle
scattering instrument collected with a monochromatic beam and an area detector. It is meant to be suitable
both for neutron SANS and X-ray SAXS data.

It covers all raw data from all SAS techniques: SAS, WSAS, grazing incidence, GISAS

Symbols:

No symbol table

Groups cited: NXcollimator, NXdata, NXdetector, NXentry, NXgeometry, NXinstrument, NXmonitor, NXmonochro-
mator, NXsample, NXshape, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

NeXus convention is to use entry1, entry2, ... for analysis software to locate
each entry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXsas

instrument: NXinstrument

name: NX_CHAR

Name of the instrument actually used to perform the experiment

source: NXsource

type: NX_CHAR

204 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXreftof.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

type of radiation source

name: NX_CHAR

Name of the radiation source

probe: NX_CHAR

Any of these values: neutron | x-ray

monochromator: NXmonochromator

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

The wavelength of the radiation

wavelength_spread: NX_FLOAT

delta_lambda/lambda (∆λ/λ): Important for resolution calculations

collimator: NXcollimator

geometry: NXgeometry

shape: NXshape

shape: NX_CHAR

Any of these values: nxcylinder | nxbox

size: NX_FLOAT {units=NX_LENGTH}

The collimation length

detector: NXdetector

data[nXPixel, nYPixel]: NX_NUMBER

This is area detector data, of number of x-pixel versus number of y-
pixels. Since the beam center is to be determined as a step of data
reduction, it is not necessary to document or assume the position of the
beam center in acquired data.

distance: NX_FLOAT {units=NX_LENGTH}

The distance between detector and sample

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

Physical size of a pixel in x-direction

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

Size of a pixel in y direction

polar_angle: NX_FLOAT {units=NX_ANGLE}

azimuthal_angle: NX_FLOAT {units=NX_ANGLE}

rotation_angle: NX_FLOAT {units=NX_ANGLE}

aequatorial_angle: NX_FLOAT {units=NX_ANGLE}

beam_center_x: NX_FLOAT {units=NX_LENGTH}

This is the x position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

beam_center_y: NX_FLOAT {units=NX_LENGTH}

3.4. Application Definitions 205

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the y position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

sample: NXsample

name: NX_CHAR

Descriptive name of sample

aequatorial_angle: NX_FLOAT {units=NX_ANGLE}

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

integral: NX_FLOAT {units=NX_ANY}

Total integral monitor counts

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXsas.nxdl.xml

3.4.11 NXsastof

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for small angle scattering using a 2D detector in TOF mode. It strives to
cover all the SAS techniques in the file again

Symbols:

No symbol table

Groups cited: NXcollimator, NXdata, NXdetector, NXentry, NXgeometry, NXinstrument, NXmonitor, NXsample,
NXshape, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

NeXus convention is to use “entry1”, “entry2”, ... for analysis software to locate each
entry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

206 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXsas.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXsastof

instrument: NXinstrument

name: NX_CHAR

Name of the instrument actually used to perform the experiment

source: NXsource

type: NX_CHAR

type of radiation source

name: NX_CHAR

Name of the radiation source

probe: NX_CHAR

Any of these values: neutron | x-ray

collimator: NXcollimator

geometry: NXgeometry

shape: NXshape

shape: NX_CHAR

Any of these values: nxcylinder | nxbox

size: NX_FLOAT {units=NX_LENGTH}

The collimation length

detector: NXdetector

data[nXPixel, nYPixel, nTOF]: NX_NUMBER

This is area detector data, of number of x-pixel versus number of y-
pixels. Since the beam center is to be determined as a step of data
reduction, it is not necessary to document or assume the position of the
beam center in acquired data.

time_of_flight[nTOF]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

distance: NX_FLOAT {units=NX_LENGTH}

The distance between detector and sample

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

Physical size of a pixel in x-direction

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

Size of a pixel in y direction

polar_angle: NX_FLOAT {units=NX_ANGLE}

azimuthal_angle: NX_FLOAT {units=NX_ANGLE}

rotation_angle: NX_FLOAT {units=NX_ANGLE}

aequatorial_angle: NX_FLOAT {units=NX_ANGLE}

beam_center_x: NX_FLOAT {units=NX_LENGTH}

3.4. Application Definitions 207

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the x position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

beam_center_y: NX_FLOAT {units=NX_LENGTH}

This is the y position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

sample: NXsample

name: NX_CHAR

Descriptive name of sample

aequatorial_angle: NX_FLOAT {units=NX_ANGLE}

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data[nTOF]: NX_INT

time_of_flight[nTOF]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXsastof.nxdl.xml

3.4.12 NXscan

Status:

application definition, extends NXobject, version 1.0b

Description:

Application definition for a generic scan instrument. This definition is more an example then a stringent
definition as the content of a given NeXus scan file needs to differ for different types of scans. This
example definition shows a scan like done on a rotation camera: the sample is rotated and a detector
image, the rotation angle and a monitor value is stored at each step in the scan. In the following, the
symbol NP is used to represent the number of scan points. These are the rules for storing scan data in
NeXus files which are implemented in this example:

• Each value varied throughout a scan is stored as an array of length NP at its respective location
within the NeXus hierarchy.

• For area detectors, NP is the first dimension, example for a detector of 256x256:
data[NP,256,256]

• The NXdata group contains links to all variables varied in the scan and the data. This to give an
equivalent to the more familiar classical tabular representation of scans.

208 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXsastof.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

These rules exist for a reason: HDF allows the first dimension of a data set to be unlimited. This means
the data can be appended too. Thus a NeXus file built according to the rules given above can be used in
the following way:

• At the start of a scan, write all the static information.

• At each scan point, append new data from varied variables and the detector to the file.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample

Structure:

(entry): NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXscan

(instrument): NXinstrument

(detector): NXdetector

data[NP, xdim, ydim]: NX_INT

(sample): NXsample

rotation_angle[NP]: NX_FLOAT

(monitor): NXmonitor

data[NP]: NX_INT

(data): NXdata

data –> /NXentry/NXinstrument/NXdetector/data

rotation_angle –> /NXentry/NXsample/rotation_angle

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXscan.nxdl.xml

3.4.13 NXspe

Status:

application definition, extends NXobject, version 1.0

Description:

NXSPE Inelastic Format. Application definition for NXSPE file format.

Symbols:

No symbol table

Groups cited: NXcollection, NXdata, NXentry, NXfermi_chopper, NXinstrument, NXsample

Structure:

3.4. Application Definitions 209

https://github.com/nexusformat/definitions/blob/master/applications/NXscan.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(entry): NXentry

program_name: NX_CHAR

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms.

Any of these values: NXSPE | NXspe

@version: NX_CHAR

NXSPE_info: NXcollection

fixed_energy: NX_FLOAT {units=NX_ENERGY}

The fixed energy used for this file.

ki_over_kf_scaling: NX_BOOLEAN

Indicates whether ki/kf scaling has been applied or not.

psi: NX_FLOAT {units=NX_ANGLE}

Orientation angle as expected in DCS-MSlice

data: NXdata

azimuthal: NX_FLOAT {units=NX_ANGLE}

azimuthal_width: NX_FLOAT {units=NX_ANGLE}

polar: NX_FLOAT {units=NX_ANGLE}

polar_width: NX_FLOAT {units=NX_ANGLE}

distance: NX_FLOAT {units=NX_LENGTH}

data: NX_NUMBER

error: NX_NUMBER

energy: NX_FLOAT {units=NX_ENERGY}

(instrument): NXinstrument

name: NX_CHAR

(fermi_chopper): NXfermi_chopper

energy: NX_NUMBER {units=NX_ENERGY}

(sample): NXsample

rotation_angle: NX_NUMBER {units=NX_ANGLE}

seblock: NX_CHAR

temperature: NX_NUMBER {units=NX_TEMPERATURE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXspe.nxdl.xml

3.4.14 NXsqom

Status:

application definition, extends NXobject, version 1.0b

Description:

210 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXspe.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the application definition for S(Q,OM) processed data. As this kind of data is in general not on a
rectangular grid after data reduction, it is stored as Q,E positions plus their intensity, table like. It is the
task of a possible visualisation program to regrid this data in a sensible way.

Symbols:

No symbol table

Groups cited: NXdata, NXentry, NXinstrument, NXparameters, NXprocess, NXsample, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

title: NX_CHAR

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXsqom

instrument: NXinstrument

name: NX_CHAR

Name of the instrument from which this data was reduced.

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

reduction: NXprocess

program: NX_CHAR

version: NX_CHAR

input: NXparameters

Input parameters for the reduction program used

filenames: NX_CHAR

Raw data files used to generate this I(Q)

output: NXparameters

Eventual output parameters from the data reduction program used

(data): NXdata

data[NP]: NX_INT

This is the intensity for each point in QE

qx[NP]: NX_CHAR {units=NX_WAVENUMBER}

3.4. Application Definitions 211

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Positions for the first dimension of Q

qy[NP]: NX_CHAR {units=NX_WAVENUMBER}

Positions for the the second dimension of Q

qz[NP]: NX_CHAR {units=NX_WAVENUMBER}

Positions for the the third dimension of Q

en[NP]: NX_FLOAT {units=NX_ENERGY}

Values for the energy transfer for each point

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXsqom.nxdl.xml

3.4.15 NXtas

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for a triple axis spectrometer. It is for the trademark scan of the TAS, the
Q-E scan. For your alignment scans use the rules in NXscan.

Symbols:

No symbol table

Groups cited: NXcrystal, NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtas

(instrument): NXinstrument

(source): NXsource

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray

monochromator: NXcrystal

ei[np]: NX_FLOAT {units=NX_ENERGY}

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

analyser: NXcrystal

212 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXsqom.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

ef[np]: NX_FLOAT {units=NX_ENERGY}

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

(detector): NXdetector

data[np]: NX_INT

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

qh[np]: NX_FLOAT {units=NX_DIMENSIONLESS}

qk[np]: NX_FLOAT {units=NX_DIMENSIONLESS}

ql[np]: NX_FLOAT {units=NX_DIMENSIONLESS}

en[np]: NX_FLOAT {units=NX_ENERGY}

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

sgu[np]: NX_FLOAT {units=NX_ANGLE}

sgl[np]: NX_FLOAT {units=NX_ANGLE}

unit_cell[6]: NX_FLOAT {units=NX_LENGTH}

orientation_matrix[9]: NX_FLOAT {units=NX_DIMENSIONLESS}

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data[np]: NX_FLOAT {units=NX_ANY}

Total integral monitor counts

(data): NXdata

One of the ei,ef,qh,qk,ql,en should get a primary=1 attribute to denote the main scan
axis

ei –> /NXentry/NXinstrument/monochromator:NXcrystal/ei

ef –> /NXentry/NXinstrument/analyzer:NXcrystal/ef

en –> /NXentry/NXsample/en

qh –> /NXentry/NXsample/qh

qk –> /NXentry/NXsample/qk

ql –> /NXentry/NXsample/ql

3.4. Application Definitions 213

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

data –> /NXentry/NXinstrument/NXdetector/data

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtas.nxdl.xml

3.4.16 NXtofnpd

Status:

application definition, extends NXobject, version 1.0b

Description:

This is a application definition for raw data from a TOF neutron powder diffractometer

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXuser

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtofnpd

pre_sample_flightpath: NX_FLOAT {units=NX_LENGTH}

This is the flight path before the sample position. This can be determined by a chop-
per, by the moderator or the source itself. In other words: it the distance to the com-
ponent which gives the T0 signal to the detector electronics. If another component in
the NXinstrument hierarchy provides this information, this should be a link.

user: NXuser

name: NX_CHAR

(instrument): NXinstrument

detector: NXdetector

data[ndet, ntimechan]: NX_INT

detector_number[ndet]: NX_INT

distance[ndet]: NX_FLOAT {units=NX_LENGTH}

distance to sample for each detector

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

polar_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

polar angle for each detector element

azimuthal_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

azimuthal angle for each detector element

(sample): NXsample

214 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXtas.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

name: NX_CHAR

Descriptive name of sample

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

distance: NX_FLOAT {units=NX_LENGTH}

data[ntimechan]: NX_INT

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

detector_number –> /NXentry/NXinstrument/NXdetector/detector_number

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtofnpd.nxdl.xml

3.4.17 NXtofraw

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for raw data from a generic TOF instrument

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXuser

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtofraw

duration: NX_FLOAT

run_number: NX_INT

pre_sample_flightpath: NX_FLOAT {units=NX_LENGTH}

3.4. Application Definitions 215

https://github.com/nexusformat/definitions/blob/master/applications/NXtofnpd.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the flight path before the sample position. This can be determined by a chop-
per, by the moderator, or the source itself. In other words: it is the distance to the
component which gives the T0 signal to the detector electronics. If another compo-
nent in the NXinstrument hierarchy provides this information, this should be a link.

user: NXuser

name: NX_CHAR

instrument: NXinstrument

detector: NXdetector

data[ndet, ntimechan]: NX_INT

detector_number[ndet]: NX_INT

distance[ndet]: NX_FLOAT {units=NX_LENGTH}

distance to sample for each detector

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

polar_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

polar angle for each detector element

azimuthal_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

polar angle for each detector element

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

nature: NX_CHAR

Any of these values: powder | liquid | single crystal

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

distance: NX_FLOAT {units=NX_LENGTH}

data[ntimechan]: NX_INT

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

integral_counts: NX_INT {units=NX_UNITLESS}

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

detector_number –> /NXentry/NXinstrument/NXdetector/detector_number

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

216 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtofraw.nxdl.xml

3.4.18 NXtofsingle

Status:

application definition, extends NXobject, version 1.0b

Description:

This is a application definition for raw data from a generic TOF instrument

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXuser

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtofsingle

duration: NX_FLOAT

pre_sample_flightpath: NX_FLOAT {units=NX_LENGTH}

This is the flight path before the sample position. This can be determined by a chop-
per, by the moderator or the source itself. In other words: it the distance to the com-
ponent which gives the T0 signal to the detector electronics. If another component in
the NXinstrument hierarchy provides this information, this should be a link.

user: NXuser

name: NX_CHAR

(instrument): NXinstrument

detector: NXdetector

data[xsize, ysize, ntimechan]: NX_INT

distance[1]: NX_FLOAT {units=NX_LENGTH}

Distance to sample for the center of the detector

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

polar_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

polar angle for each detector element

azimuthal_angle[ndet]: NX_FLOAT {units=NX_ANGLE}

azimuthal angle for each detector element

(sample): NXsample

name: NX_CHAR

3.4. Application Definitions 217

https://github.com/nexusformat/definitions/blob/master/applications/NXtofraw.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Descriptive name of sample

nature: NX_CHAR

Any of these values: powder | liquid | single crystal

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

distance: NX_FLOAT {units=NX_LENGTH}

data[ntimechan]: NX_INT

time_of_flight[ntimechan]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

data: NXdata

data –> /NXentry/NXinstrument/NXdetector/data

detector_number –> /NXentry/NXinstrument/NXdetector/detector_number

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtofsingle.nxdl.xml

3.4.19 NXtomo

Status:

application definition, extends NXobject, version 2.0

Description:

This is the application definition for x-ray or neutron tomography raw data. In tomography a number of
dark field images are measured, some bright field images and, of course the sample. In order to distinguish
between them images carry a image_key.

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

nFrames: number of frames

xsize: number of pixels in X direction

ysize: number of pixels in Y direction

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

218 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXtofsingle.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtomo

instrument: NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

detector: NXdetector

data[nFrames, xsize, ysize]: NX_INT

image_key[nFrames]: NX_INT

In order to distinguish between sample projectrions, dark and flat im-
ages, a magic number is recorded per frame. The key is as follows:

• projection = 0

• flat field = 1

• dark field = 2

• invalid = 3

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

distance: NX_FLOAT {units=NX_LENGTH}

Distance between detector and sample

x_rotation_axis_pixel_position: NX_FLOAT

y_rotation_axis_pixel_position: NX_FLOAT

sample: NXsample

name: NX_CHAR

Descriptive name of sample

rotation_angle[nFrames]: NX_FLOAT {units=NX_ANGLE}

In practice this axis is always aligned along one pixel direction on the detec-
tor and usually vertical. There are experiments with horizontal rotation axes,
so this would need to be indicated somehow. For now the best way for that
is an open question.

x_translation[nFrames]: NX_FLOAT {units=NX_LENGTH}

y_translation[nFrames]: NX_FLOAT {units=NX_LENGTH}

z_translation[nFrames]: NX_FLOAT {units=NX_LENGTH}

control: NXmonitor

data[nFrames]: NX_FLOAT {units=NX_ANY}

3.4. Application Definitions 219

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Total integral monitor counts for each measured frame. Allows a to correc-
tion for fluctuations in the beam between frames.

data: NXdata

data –> /NXentry/NXinstrument/detector:NXdetector/data

rotation_angle –> /NXentry/NXsample/rotation_angle

image_key –> /NXentry/NXinstrument/detector:NXdetector/image_key

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtomo.nxdl.xml

3.4.20 NXtomophase

Status:

application definition, extends NXobject, version 1.0b

Description:

This is the application definition for x-ray or neutron tomography raw data with phase contrast variation
at each point. In tomography first some dark field images are measured, some bright field images and, of
course the sample. In order to properly sort the order of the images taken, a sequence number is stored
with each image.

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

nBrightFrames: number of bright frames

nDarkFrames: number of dark frames

nSampleFrames: number of image (sample) frames

nPhase: number of phase settings

xsize: number of pixels in X direction

ysize: number of pixels in Y direction

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtomophase

instrument: NXinstrument

(source): NXsource

220 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXtomo.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

bright_field: NXdetector

data[nBrightFrames, xsize, ysize]: NX_INT

sequence_number[nBrightFrames]: NX_INT

dark_field: NXdetector

data[nDarkFrames, xsize, ysize]: NX_INT

sequence_number[nDarkFrames]: NX_INT

sample: NXdetector

data[nSampleFrames, nPhase, xsize, ysize]: NX_INT

sequence_number[nSampleFrames, nPhase]: NX_INT

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

distance: NX_FLOAT {units=NX_LENGTH}

Distance between detector and sample

sample: NXsample

name: NX_CHAR

Descriptive name of sample

rotation_angle[nSampleFrames]: NX_FLOAT {units=NX_ANGLE}

x_translation[nSampleFrames]: NX_FLOAT {units=NX_LENGTH}

y_translation[nSampleFrames]: NX_FLOAT {units=NX_LENGTH}

z_translation[nSampleFrames]: NX_FLOAT {units=NX_LENGTH}

control: NXmonitor

integral[nDarkFrames + nBrightFrames + nSampleFrame]: NX_FLOAT
{units=NX_ANY}

Total integral monitor counts for each measured frame. Allows a correction
for fluctuations in the beam between frames.

data: NXdata

data –> /NXentry/NXinstrument/sample:NXdetector/data

rotation_angle –> /NXentry/NXsample/rotation_angle

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtomophase.nxdl.xml

3.4. Application Definitions 221

https://github.com/nexusformat/definitions/blob/master/applications/NXtomophase.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.4.21 NXtomoproc

Status:

application definition, extends NXobject, version 1.0b

Description:

This is an application definition for the final result of a tomography experiment: a 3D construction of
some volume of physical properties.

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

nx: number of voxels in X direction

ny: number of voxels in Y direction

nz: number of voxels in Z direction

Groups cited: NXdata, NXentry, NXinstrument, NXparameters, NXprocess, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXtomoproc

(instrument): NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

reconstruction: NXprocess

program: NX_CHAR

Name of the program used for reconstruction

version: NX_CHAR

Version of the program used

date: NX_DATE_TIME

Date and time of reconstruction processing.

parameters: NXparameters

raw_file: NX_CHAR

222 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Original raw data file this data was derived from

data: NXdata

data[nx, nx, nz]: NX_INT

This is the reconstructed volume. This can be different things. Please indi-
cate in the unit attribute what physical quantity this really is.

@transform: NX_CHAR

@offset: NX_CHAR

@scaling: NX_CHAR

x[nx]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the x-axis of data. The units
must be appropriate for the measurement.

y[ny]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the y-axis of data. The units
must be appropriate for the measurement.

z[nz]: NX_FLOAT {units=NX_ANY}

This is an array holding the values to use for the z-axis of data. The units
must be appropriate for the measurement.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXtomoproc.nxdl.xml

3.4.22 NXxas

Status:

application definition, extends NXobject, version 1.0

Description:

This is an application definition for raw data from an X-ray absorption spectroscopy experiment. This is
essentially a scan on energy versus incoming/ absorbed beam.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXmonochromator, NXsample, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

NeXus convention is to use “entry1”, “entry2”, ... for analysis software to locate each
entry.

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxas

3.4. Application Definitions 223

https://github.com/nexusformat/definitions/blob/master/applications/NXtomoproc.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(instrument): NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Obligatory value: x-ray

monochromator: NXmonochromator

energy[np]: NX_FLOAT

incoming_beam: NXdetector

data[np]: NX_INT

absorbed_beam: NXdetector

data[np]: NX_INT

mark this field with attribute signal=1

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

(monitor): NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

data[np]: NX_INT

(data): NXdata

energy –> /entry/instrument/monochromator/energy

absorbed_beam –> /entry/instrument/absorbed_beam/data

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxas.nxdl.xml

3.4.23 NXxasproc

Status:

application definition, extends NXobject, version 1.0

Description:

This is an application definition for processed data from XAS. This is energy versus
I(incoming)/I(absorbed).

Symbols:

No symbol table

224 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXxas.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Groups cited: NXdata, NXentry, NXparameters, NXprocess, NXsample

Structure:

(entry): NXentry

@entry: NX_CHAR

NeXus convention is to use “entry1”, “entry2”, ... for analysis software to locate each
entry.

title: NX_CHAR

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxasproc

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

XAS_data_reduction: NXprocess

program: NX_CHAR

Name of the program used for reconstruction

version: NX_CHAR

Version of the program used

date: NX_DATE_TIME

Date and time of reconstruction processing.

parameters: NXparameters

raw_file: NX_CHAR

Original raw data file this data was derived from

(data): NXdata

energy[np]: NX_CHAR

data[np]: NX_FLOAT

This is corrected and calibrated I(incoming)/I(absorbed). So it is the absorp-
tion. Expect attribute signal=1

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxasproc.nxdl.xml

3.4.24 NXxbase

Status:

application definition, extends NXobject, version 1.0b

Description:

This definition covers the common parts of all monochromatic single crystal raw data application defini-
tions.

Symbols:

3.4. Application Definitions 225

https://github.com/nexusformat/definitions/blob/master/applications/NXxasproc.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonitor, NXmonochromator, NXsample, NXsource

Structure:

entry: NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxbase

instrument: NXinstrument

source: NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Any of these values: neutron | x-ray | electron

monochromator: NXmonochromator

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

detector: NXdetector

The name of the group is detector if there is only one detector, if there are
several, names have to be detector1, detector2, ...detectorn.

data[np, number of x pixels, number of y pixels]: NX_INT

The area detector data, the first dimension is always the number of scan
points, the second and third are the number of pixels in x and y. The
origin is always assumed to be in the center of the detector. maxOccurs
is limited to the the number of detectors on your instrument.

@signal: NX_POSINT

Obligatory value: 1

x_pixel_size: NX_FLOAT {units=NX_LENGTH}

y_pixel_size: NX_FLOAT {units=NX_LENGTH}

distance: NX_FLOAT {units=NX_LENGTH}

frame_start_number: NX_INT

This is the start number of the first frame of a scan. In PX one often
scans a couple of frames on a give sample, then does something else,
then returns to the same sample and scans some more frames. Each
time with a new data file. This number helps concatenating such mea-
surements.

sample: NXsample

name: NX_CHAR

Descriptive name of sample

226 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

orientation_matrix[3, 3]: NX_FLOAT

The orientation matrix according to Busing and Levy conventions. This is
not strictly necessary as the UB can always be derived from the data. But let
us bow to common usage which includes the UB nearly always.

unit_cell[6]: NX_FLOAT

The unit cell, a, b, c, alpha, beta, gamma. Again, not strictly necessary, but
normally written.

temperature[NP]: NX_FLOAT

The sample temperature or whatever sensor represents this value best

x_translation: NX_FLOAT {units=NX_LENGTH}

Translation of the sample along the X-direction of the laboratory coordinate
system

y_translation: NX_FLOAT {units=NX_LENGTH}

Translation of the sample along the Y-direction of the laboratory coordinate
system

distance: NX_FLOAT {units=NX_LENGTH}

Translation of the sample along the Z-direction of the laboratory coordinate
system

control: NXmonitor

mode: NX_CHAR

Count to a preset value based on either clock time (timer) or received monitor
counts (monitor).

Any of these values: monitor | timer

preset: NX_FLOAT

preset value for time or monitor

integral: NX_FLOAT {units=NX_ANY}

Total integral monitor counts

(data): NXdata

The name of this group id data if there is only one detector; if there are several the
names will be data1, data2, data3 and will point to the corresponding detector groups
in the instrument hierarchy.

data –> /NXentry/NXinstrument/NXdetector/data

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxbase.nxdl.xml

3.4.25 NXxeuler

Status:

application definition, extends NXxbase, version 1.0b

Description:

3.4. Application Definitions 227

https://github.com/nexusformat/definitions/blob/master/applications/NXxbase.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is the application definition for raw data from a four-circle diffractometer with an eulerian cradle.
It extends NXxbase, so the full definition is the content of NXxbase plus the data defined here. All four
angles are logged in order to support arbitrary scans in reciprocal space.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXsample

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxeuler

instrument: NXinstrument

detector: NXdetector

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

The polar_angle (two theta) where the detector is placed at each scan
point.

sample: NXsample

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the sample rotation angle at each scan point

chi[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the chi angle of the eulerian cradle at each scan point

phi[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the phi rotation of the eulerian cradle at each scan
point

name: NXdata

polar_angle –> /NXentry/NXinstrument/NXdetector/polar_angle

rotation_angle –> /NXentry/NXsample/rotation_angle

chi –> /NXentry/NXsample/chi

phi –> /NXentry/NXsample/phi

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxeuler.nxdl.xml

3.4.26 NXxkappa

Status:

application definition, extends NXxbase, version 1.0b

Description:

This is the application definition for raw data from a kappa geometry (CAD4) single crystal diffractometer.
It extends NXxbase, so the full definition is the content of NXxbase plus the data defined here.

Symbols:

228 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXxeuler.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXsample

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxkappa

instrument: NXinstrument

detector: NXdetector

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

The polar_angle (two theta) at each scan point

sample: NXsample

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the sample rotation angle at each scan point

kappa[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the kappa angle at each scan point

phi[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the phi angle at each scan point

alpha: NX_FLOAT {units=NX_ANGLE}

This holds the inclination angle of the kappa arm.

name: NXdata

polar_angle –> /NXentry/NXinstrument/NXdetector/polar_angle

rotation_angle –> /NXentry/NXsample/rotation_angle

kappa –> /NXentry/NXsample/kappa

phi –> /NXentry/NXsample/phi

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxkappa.nxdl.xml

3.4.27 NXxlaue

Status:

application definition, extends NXxrot, version 1.0b

Description:

This is the application definition for raw data from a single crystal laue camera. It extends NXxrot.

Symbols:

No symbol table

Groups cited: NXdata, NXentry, NXinstrument, NXsource

Structure:

3.4. Application Definitions 229

https://github.com/nexusformat/definitions/blob/master/applications/NXxkappa.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxlaue

instrument: NXinstrument

source: NXsource

distribution: NXdata

This is the wavelength distribution of the beam

data[ne]: NX_CHAR

expect signal=1 axes="energy"

wavelength[ne]: NX_CHAR {units=NX_WAVELENGTH}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxlaue.nxdl.xml

3.4.28 NXxlaueplate

Status:

application definition, extends NXxlaue, version 1.0b

Description:

This is the application definition for raw data from a single crystal Laue camera with an image plate as a
detector. It extends NXxlaue.

Symbols:

No symbol table

Groups cited: NXdetector, NXentry, NXinstrument

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxlaueplate

instrument: NXinstrument

detector: NXdetector

diameter: NX_FLOAT {units=NX_LENGTH}

The diameter of a cylindrical detector

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxlaueplate.nxdl.xml

230 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXxlaue.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/applications/NXxlaueplate.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.4.29 NXxnb

Status:

application definition, extends NXxbase, version 1.0b

Description:

This is the application definition for raw data from a single crystal diffractometer measuring in normal
beam mode. It extends NXxbase, so the full definition is the content of NXxbase plus the data defined
here. All angles are logged in order to support arbitrary scans in reciprocal space.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXsample

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms

Obligatory value: NXxnb

instrument: NXinstrument

detector: NXdetector

polar_angle[np]: NX_FLOAT {units=NX_ANGLE}

The polar_angle (gamma) of the detector for each scan point.

tilt_angle[np]: NX_FLOAT {units=NX_ANGLE}

The angle by which the detector has been tilted out of the scattering
plane.

sample: NXsample

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the sample rotation angle at each scan point

name: NXdata

polar_angle –> /NXentry/NXinstrument/NXdetector/polar_angle

tilt –> /NXentry/NXinstrument/NXdetector/tilt

rotation_angle –> /NXentry/NXsample/rotation_angle

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxnb.nxdl.xml

3.4.30 NXxrot

Status:

application definition, extends NXxbase, version 1.0b

Description:

This is the application definition for raw data from a rotation camera. It extends NXxbase, so the full
definition is the content of NXxbase plus the data defined here.

3.4. Application Definitions 231

https://github.com/nexusformat/definitions/blob/master/applications/NXxnb.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Symbols:

No symbol table

Groups cited: NXattenuator, NXdata, NXdetector, NXentry, NXinstrument, NXsample

Structure:

entry: NXentry

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms.

Obligatory value: NXxrot

instrument: NXinstrument

detector: NXdetector

polar_angle: NX_FLOAT {units=NX_ANGLE}

The polar_angle (two theta) where the detector is placed.

beam_center_x: NX_FLOAT {units=NX_LENGTH}

This is the x position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

beam_center_y: NX_FLOAT {units=NX_LENGTH}

This is the y position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

attenuator: NXattenuator

attenuator_transmission: NX_FLOAT {units=NX_ANY}

sample: NXsample

rotation_angle[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the sample rotation start angle at each scan point

rotation_angle_step[np]: NX_FLOAT {units=NX_ANGLE}

This is an array holding the step made for sample rotation angle at each scan
point

name: NXdata

rotation_angle –> /NXentry/NXsample/rotation_angle

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/applications/NXxrot.nxdl.xml

3.5 Contributed Definitions

A description of each NeXus contributed definition is given. NXDL files in the NeXus contributed definitions include
propositions from the community for NeXus base classes or application definitions, as well as other NXDL files
for long-term archival by NeXus. Consider the contributed definitions as either in incubation or a special case not
for general use. The NIAC: The NeXus International Advisory Committee is charged to review any new contributed
definitions and provide feedback to the authors before ratification and acceptance as either a base class or application
definition.

232 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/applications/NXxrot.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.5.1 NXarpes

Status:

contributed definition, extends NXobject, version 1.0

Description:

This is an application definition for angular resolved photo electron spectroscopy. It has been drawn up
with hemispherical electron analysers in mind.

Symbols:

No symbol table

Groups cited: NXdata, NXdetector, NXentry, NXinstrument, NXmonochromator, NXsample, NXsource

Structure:

(entry): NXentry

@entry: NX_CHAR

NeXus convention is to use “entry1”, “entry2”, ... for analysis software to locate each
entry.

title: NX_CHAR

start_time: NX_DATE_TIME

definition: NX_CHAR

Official NeXus NXDL schema to which this file conforms.

Obligatory value: NXarpes

(instrument): NXinstrument

(source): NXsource

type: NX_CHAR

name: NX_CHAR

probe: NX_CHAR

Obligatory value: x-ray

monochromator: NXmonochromator

energy: NX_NUMBER {units=NX_ENERGY}

analyser: NXdetector

data: NX_NUMBER

lens_mode: NX_CHAR

setting for the electron analyser lens

acquisition_mode: NX_CHAR

Any of these values: swept | fixed

entrance_slit_shape: NX_CHAR

Any of these values: curved | straight

entrance_slit_setting: NX_NUMBER {units=NX_ANY}

3.5. Contributed Definitions 233

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

dial setting of the entrance slit

entrance_slit_size: NX_CHAR {units=NX_LENGTH}

size of the entrance slit

pass_energy: NX_CHAR {units=NX_ENERGY}

energy of the electrons on the mean path of the analyser

time_per_channel: NX_CHAR {units=NX_TIME}

todo: define more clearly

angles: NX_NUMBER {units=NX_ANGLE}

Angular axis of the analyser data which dimension the axis applies to is
defined using the normal NXdata methods.

energies: NX_NUMBER {units=NX_ENERGY}

Energy axis of the analyser data which dimension the axis applies to is
defined using the normal NXdata methods.

sensor_size[]: NX_INT

number of raw active elements in fast and slow pixel dimension direc-
tion

region_origin[]: NX_INT

origin of rectangular region selected for readout

region_size[]: NX_INT

size of rectangular region selected for readout

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

temperature: NX_NUMBER {units=NX_TEMPERATURE}

(data): NXdata

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXarpes.nxdl.xml

3.5.2 NXbeamline

Status:

contributed definition, extends NXobject, version 1.0

Description:

container for elements describing beamline.

Symbols:

No symbol table

Groups cited: NXaperture, NXbending_magnet, NXcollection, NXelectrostatic_kicker, NXmagnetic_kicker,
NXquadrupole_magnet, NXseparator, NXsolenoid_magnet, NXspin_rotator

Structure:

234 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXarpes.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

beamline: NX_CHAR

name of beamline.

diagnostics: NXcollection

(bending_magnet): NXbending_magnet

(quadrupole_magnet): NXquadrupole_magnet

(solenoid_magnet): NXsolenoid_magnet

(separator): NXseparator

(spin_rotator): NXspin_rotator

(electrostatic_kicker): NXelectrostatic_kicker

(magnetic_kicker): NXmagnetic_kicker

(aperture): NXaperture

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXbeamline.nxdl.xml

3.5.3 NXcanSAS

Status:

contributed definition, extends NXobject, version 1.0

Description:

Implementation of the canSAS standard to store reduced multi-dimensional small-angle scattering data.

for more details, see:

• http://www.cansas.org/

• http://www.cansas.org/formats/canSAS2012/1.0/doc

Symbols:

No symbol table

Groups cited: NXcollection, NXcollimator, NXdata, NXdetector, NXinstrument, NXorientation, NXparameters, NX-
process, NXsample, NXsource, NXsubentry, NXtranslation

Structure:

(subentry): NXsubentry

Place the canSAS SASentry group as a child of a NeXus NXentry group.

Note: It is required for all numerical objects to provide a units attribute that describes the
engineering units. Use the Unidata UDunits 3 specification as this is compatible with various
community standards.

@canSAS_class: NX_CHAR

Official canSAS group: SASentry

Obligatory value: SASentry

@version: NX_CHAR
3 The UDunits specification also includes instructions for derived units.

3.5. Contributed Definitions 235

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXbeamline.nxdl.xml
http://www.cansas.org/
http://www.cansas.org/formats/canSAS2012/1.0/doc

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Describes the version of the canSAS standard used to write this data. This must be a
text (not numerical) representation. Such as:

@version="1.0"

Obligatory value: 1.0

definition: NX_CHAR

Official NeXus NXDL schema to which this subentry conforms.

Obligatory value: NXcanSAS

title: NX_CHAR

Title of this SASentry.

run: NX_CHAR

Run identification for this SASentry. For many facilities, this is an integer. Use
multiple instances of run as needed.

@name: NX_CHAR

Optional string attribute to identify this particular run. Could use this to
associate (correlate) multiple SASdata elements with run elements.

(data): NXdata

A SASData group contains reduced a single small-angle scattering data set that can
be represented as I(~Q) or I(| ~Q|).

Figure 3.10: The SASdata element

Q can be either a vector (~Q) or a vector magnitude (| ~Q|)

236 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The name of each SASdata must be unique within a SASentry group. Such as
sasdata01.

A SASdata group has several attributes:

• I_axes

• Q_indices

• Mask_indices

To indicate the dependency relationships of other varied parameters, use at-
tributes similar to @Mask_indices (such as @Temperature_indices or
@Pressure_indices).

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASdata

Obligatory value: SASdata

@I_axes: NX_CHAR

Comma-separated list that describes the names of the data objects that cor-
respond to the indices of the I data object. Such as:

@I_axes="Temperature,Time,Pressure,Q,Q"

Since there are five items in the list, the intensity field I must be a five-
dimensional array (rank=5).

@Q_indices: NX_CHAR

Array that describes which indices (of the I data object) are used to reference
the Q data object. The items in this array use zero-based indexing. Such as:

@Q_indices=1,3,4

which indicates that Q requires three indices from the I data object: one
for time and two for Q position. Thus, in this example, the Q data is time-
dependent: ~Q(t).

@Mask_indices: NX_CHAR

Array that describes which indices (of the I data object) are used to reference
the Mask data object. The items in this array use zero-based indexing. Such
as:

@Mask_indices=3,4

which indicates that Q requires two indices from the I data object for Q
position.

Q: NX_NUMBER {units=NX_PER_LENGTH}

Array of Q data to accompany I .

Q may be represented either as the three-dimensional scattering vector ~Q or
by the magnitude of the scattering vector, | ~Q|.

| ~Q| = (4π/λ)sin(θ) (3.1)

3.5. Contributed Definitions 237

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.11: The ~Q geometry.

When we write Q, we may refer to either or both of | ~Q| or ~Q, depending on
the context.

@uncertainty: NX_CHAR

Typically the estimated standard deviation. More general, this is the
estimate of the uncertainty of each “math:Q.

Can use this to describe the slit-length at each datum. Use a subgroup to
describe any supplementary uncertainty data such as two-dimensional.

(optional for numerical arrays) Name of the data object (in this SASdata
group) that provides the uncertainty to be used for data analysis.

I: NX_NUMBER

Array of intensity (I) data.

The intensity may be represented in one of these forms:

absolute units: dΣ/dΩ(Q) differential cross-section per unit volume per
unit solid angle (typical units: 1/cm/sr)

absolute units: dσ/dΩ(Q) differential cross-section per unit atom per unit
solid angle (typical units: cm^2)

arbitrary units: I(Q) usually a ratio of two detectors but units are mean-
ingless (typical units: a.u.)

This presents a few problems for analysis software to sort out when reading
the data. Fortunately, it is possible to analyze the units to determine which
type of intensity is being reported and make choices at the time the file is
read. But this is an area for consideration and possible improvement.

One problem arises with software that automatically converts data into some
canonical units used by that software. The software should not convert units
between these different types of intensity indiscriminately.

A second problem is that when arbitrary units are used, then the set of pos-
sible analytical results is restricted. With such units, no meaningful volume
fraction or number density can be determined directly from I(Q).

238 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

In some cases, it is possible to apply a factor to convert the arbitrary units to
an absolute scale. This should be considered as a possibility of the analysis
process.

@uncertainty: NX_CHAR

Typically the estimated standard deviation. 1/
√
I for Poisson statistics.

More generally, though, this is the estimate of the uncertainty of each
“math:I.

(optional for numerical arrays) Name of the data object (in this SASdata
group) that provides the uncertainty to be used for data analysis.

Idev is the canonical name from the 1D standard. The multi-D standard
allows for this name to be described in this attribute.

Qmean: NX_CHAR {units=NX_PER_LENGTH}

Mean value of Q for this data point. Useful when describing data that has
been binned from higher-resolution data. It is unexpected for Q and Qmean
to have different units.

ShadowFactor: NX_CHAR {units=NX_DIMENSIONLESS}

A numerical factor applied to pixels affected by the beam stop penumbra.
Used in data files from NIST/NCNR instruments.

See: J.G. Barker and J.S. Pedersen (1995) J. Appl. Cryst. 28, 105-114.

(parameters): NXparameters

Supplementary Uncertainty Data

@canSAS_class: NX_CHAR

ad hoc canSAS group: NXcanSAS (contributed definition); SASuncer-
tainties

Obligatory value: SASuncertainties

(instrument): NXinstrument

This the SAS instrument.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASinstrument

Obligatory value: SASinstrument

(collimator): NXcollimator

Description of a collimating element in the instrument.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SAScolli-
mation

Obligatory value: SAScollimation

length: NX_NUMBER {units=NX_LENGTH}

Amount/length of collimation inserted (as on a SANS instrument)

aperture: NXparameters

3.5. Contributed Definitions 239

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.12: The SASinstrument element

Figure 3.13: The SAScollimation element

240 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Description of a slit or aperture.

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

@name: NX_CHAR

Optional name attribute for this aperture

@type: NX_CHAR

Optional text attribute to describe the type of aperture (pinhole,
4-blade slit, Soller slit, ...).

distance: NX_NUMBER {units=NX_LENGTH}

Distance from this collimation element to the sample.

size: NXparameters

Opening dimensions of this aperture.

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

x: NX_NUMBER {units=NX_LENGTH}

Dimension of the collimation in x.

y: NX_NUMBER {units=NX_LENGTH}

Dimension of the collimation in y.

z: NX_NUMBER {units=NX_LENGTH}

Dimension of the collimation in z.

While z is allowed by the canSAS standard, it may not make
sense to use it in some situations. Use of z may be ignored by
processing software.

(detector): NXdetector

Description of a detector in the instrument.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASdetec-
tor

Obligatory value: SASdetector

name: NX_CHAR

Identifies the name of this detector

SDD: NX_NUMBER {units=NX_LENGTH}

Distance between sample and detector.

slit_length: NX_NUMBER {units=NX_PER_LENGTH}

Slit length of the instrument for this detector, expressed in the same
units as Q.

3.5. Contributed Definitions 241

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.14: The SASdetector element

242 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

offset: NXparameters

Offset of the detector position.

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

x: NX_NUMBER {units=NX_LENGTH}

y: NX_NUMBER {units=NX_LENGTH}

z: NX_NUMBER {units=NX_LENGTH}

While z is allowed by the canSAS standard, it may not make sense
to use it in some situations. Use of z may be ignored by processing
software.

orientation: NXparameters

The orientation element describes simple rotations about a single axis
(rather than a full set of rotations as in a crystallographic context).

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

roll: NX_NUMBER {units=NX_LENGTH}

Roll is rotation about the z axis.

pitch: NX_NUMBER {units=NX_LENGTH}

Pitch is rotation about the x axis.

yaw: NX_NUMBER {units=NX_LENGTH}

Yaw is rotation about the y axis.

beam_center: NXparameters

Position of the beam center on the detector

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

x: NX_NUMBER {units=NX_LENGTH}

y: NX_NUMBER {units=NX_LENGTH}

z: NX_NUMBER {units=NX_LENGTH}

While z is allowed by the canSAS standard, it may not make sense
to use it in some situations. Use of z may be ignored by processing
software.

pixel_size: NXparameters

size of the pixels on this detector.

@canSAS_class: NX_CHAR

3.5. Contributed Definitions 243

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

ad hoc canSAS_class.

Obligatory value: container

x: NX_NUMBER {units=NX_LENGTH}

y: NX_NUMBER {units=NX_LENGTH}

z: NX_NUMBER {units=NX_LENGTH}

While z is allowed by the canSAS standard, it may not make sense
to use it in some situations. Use of z may be ignored by processing
software.

(source): NXsource

Description of the radiation source.

Figure 3.15: The SASsource element

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SAS-
source

Obligatory value: SASsource

radiation: NX_CHAR

244 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Name of the radiation used. Note that this is not the name of the facility!

Any of these values:

• Spallation Neutron Source

• Pulsed Reactor Neutron Source

• Reactor Neutron Source

• Synchrotron X-ray Source

• Pulsed Muon Source

• Rotating Anode X-ray

• Fixed Tube X-ray

• UV Laser

• Free-Electron Laser

• Optical Laser

• Ion Source

• UV Plasma Source

• neutron

• x-ray

• muon

• electron

• ultraviolet

• visible light

• positron

• proton

beam_shape: NX_CHAR

Text description of the shape of the beam (incident on the sample).

wavelength: NX_NUMBER {units=NX_WAVELENGTH}

wavelength (λ) of radiation incident on the sample

wavelength_min: NX_NUMBER {units=NX_WAVELENGTH}

Some facilities specify wavelength using a range. This is the lowest
wavelength in such a range.

wavelength_max: NX_NUMBER {units=NX_WAVELENGTH}

Some facilities specify wavelength using a range. This is the highest
wavelength in such a range.

wavelength_spread: NX_NUMBER {units=NX_WAVELENGTH}

Some facilities specify wavelength using a range. This is the width of
such a range.

beam_size: NXparameters

3.5. Contributed Definitions 245

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Physical dimension of the beam (incident on the sample). If beam is
round, just use x.

@canSAS_class: NX_CHAR

ad hoc canSAS_class.

Obligatory value: container

x: NX_NUMBER {units=NX_LENGTH}

y: NX_NUMBER {units=NX_LENGTH}

z: NX_NUMBER {units=NX_LENGTH}

While z is allowed by the canSAS standard, it may not make sense
to use it in some situations. Use of z may be ignored by processing
software.

(sample): NXsample

Description of the sample.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASsample

Obligatory value: SASsample

ID: NX_CHAR

Text string that identifies this sample.

thickness: NX_FLOAT {units=NX_LENGTH}

Thickness of this sample

transmission: NX_NUMBER {units=NX_DIMENSIONLESS}

Transmission (I/I0) of this sample. Note that there is no units attribute as
this number is dimensionless.

temperature: NX_NUMBER {units=NX_TEMPERATURE}

Temperature of this sample.

details: NX_CHAR

Any additional sample details.

position: NXtranslation

Location of the sample in x, y, and z.

orientation: NXorientation

Orientation (rotation) of the sample.

(process): NXprocess

Description of a processing or analysis step.

Add additional fields as needed to describe value(s) of any variable, parameter, or
term related to the SASprocess step. Be sure to include units attributes for all numer-
ical fields.

@canSAS_class: NX_CHAR

246 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.16: The SASsample element

3.5. Contributed Definitions 247

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.17: The SASprocess element

248 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Official canSAS group: NXcanSAS (contributed definition); SASprocess

Obligatory value: SASprocess

name: NX_CHAR

Optional name for this data processing or analysis step

date: NX_DATE_TIME

Optional date for this data processing or analysis step. 4

description: NX_CHAR

Optional description for this data processing or analysis step

term: NX_CHAR

Specifies the value of a single variable, parameter, or term (while defined
here as a string, it could be a number) related to the SASprocess step.

The name term is not required, it could take any name.

(collection): NXcollection

Describes anything about SASprocess that is not already described.

Any content not defined in the canSAS standard can be placed at this point.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASpro-
cessnote

Obligatory value: SASprocessnote

(collection): NXcollection

Free form description of anything not covered by other elements.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SASnote

Obligatory value: SASnote

(data): NXdata

This describes certain data obtained from a variable-wavelength source such as
pulsed-neutron source.

@canSAS_class: NX_CHAR

Official canSAS group: NXcanSAS (contributed definition); SAStransmis-
sion_spectrum

Obligatory value: SAStransmission_spectrum

@name: NX_CHAR

Identify what type of spectrum is being described. It is expected that this
value will take either of these two values:

4 ISO-8601 standard time representation.
Use a format for the date which is machine-readable such as ISO-8601 (e.g., yyyy-mm-ddThh:mm:ss) or modified ISO-8601 (e.g.,

yyyy-mm-dd hh:mm:ss).
See: http://www.w3.org/TR/NOTE-datetime or http://en.wikipedia.org/wiki/ISO_8601 for more details.

3.5. Contributed Definitions 249

http://www.w3.org/TR/NOTE-datetime
http://en.wikipedia.org/wiki/ISO_8601

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.18: The SAStransmission_spectrum element

value meaning
sample measurement with the sample and container
can measurement with just the container

@timestamp: NX_DATE_TIME

ISO-8601 time 2

lambda: NX_NUMBER {units=NX_WAVELENGTH}

Wavelength of the radiation.

T: NX_NUMBER {units=NX_DIMENSIONLESS}

Transmission value (I/I0)

@signal: NX_CHAR

Obligatory value:

• 1: the default data to plot in this group

@axes: NX_CHAR

Obligatory value:

• T: the wavelengths field corresponding to this transmission

@uncertainty: NX_CHAR

Estimate of the uncertainty of each “math:T.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXcanSAS.nxdl.xml

3.5.4 NXcite

Status:

contributed definition, extends NXobject, version 1.0

250 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXcanSAS.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Description:

Definition to include references for example for detectors, manuals, instruments, acquisition or analysis
software used.

The idea would be to include this in the relevant NeXus object: NXdetector for detectors, NXinstrument
for instruments, etc

Symbols:

No symbol table

Groups cited: none

Structure:

description: NX_CHAR

This should describe the reason for including this reference. For example: The dataset in this
group was normalised using the method which is described in detail in this reference.

doi: NX_CHAR

DOI referencing the document or data.

endnote: NX_CHAR

Bibliographic reference data in EndNote format.

bibtex: NX_CHAR

Bibliographic reference data in BibTeX format.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXcite.nxdl.xml

3.5.5 NXelectrostatic_kicker

Status:

contributed definition, extends NXobject, version 1.0

Description:

definition for a electrostatic kicker.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the kicker.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

timing: NX_FLOAT {units=NX_TIME}

kicker timing as defined by description attribute

@description: NX_CHAR

set_current: NX_FLOAT {units=NX_CURRENT}

3.5. Contributed Definitions 251

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXcite.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

current set on supply.

set_voltage: NX_FLOAT {units=NX_VOLTAGE}

volage set on supply.

read_current: NXlog

current read from supply.

value: NX_CHAR {units=NX_CURRENT}

read_voltage: NXlog

voltage read from supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXelectrostatic_kicker.nxdl.xml

3.5.6 NXfresnel_zone_plate

Status:

contributed definition, extends NXobject, version 1.0

Description:

description for a fresnel zone plate

Symbols:

No symbol table

Groups cited: NXgeometry

Structure:

focus_parameters: NX_FLOAT

list of polynomial coefficients describing the focal length of the zone plate, in increasing order.

outer_diameter: NX_FLOAT {units=NX_LENGTH}

outermost_zone_width: NX_FLOAT {units=NX_LENGTH}

central_stop_diameter: NX_FLOAT {units=NX_LENGTH}

fabrication: NX_CHAR

how zone plate was manufactured

Any of these values: etched | plated | zone doubled

zone_height: NX_FLOAT {units=NX_LENGTH}

zone_material: NX_CHAR

Material of the zones themselves

zone_support_material: NX_CHAR

Material present between the zones. This is usually only present for the “zone doubled” fabri-
cation process

252 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXelectrostatic_kicker.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

central_stop_material: NX_CHAR

central_stop_thickness: NX_FLOAT {units=NX_LENGTH}

mask_thickness: NX_FLOAT {units=NX_LENGTH}

mask_material: NX_CHAR

If no mask is present, set mask_thickness to 0 and omit the mask_material field

support_membrane_material: NX_CHAR

support_membrane_thickness: NX_FLOAT {units=NX_LENGTH}

(geometry): NXgeometry

“Engineering” position of the fresnel zone plate

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXfresnel_zone_plate.nxdl.xml

3.5.7 NXmagnetic_kicker

Status:

contributed definition, extends NXobject, version 1.0

Description:

definition for a magnetic kicker.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the kicker.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

timing: NX_FLOAT {units=NX_TIME}

kicker timing as defined by description attribute

@description: NX_CHAR

set_current: NX_FLOAT {units=NX_CURRENT}

current set on supply.

set_voltage: NX_FLOAT {units=NX_VOLTAGE}

voltage set on supply.

read_current: NXlog

current read from supply.

value: NX_CHAR {units=NX_CURRENT}

read_voltage: NXlog

3.5. Contributed Definitions 253

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXfresnel_zone_plate.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

voltage read from supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXmagnetic_kicker.nxdl.xml

3.5.8 NXmx

Status:

contributed definition, extends NXobject, version 1.2

Description:

functional application definition for macromolecular crystallography

Symbols:

These symbols will be used below to coordinate datasets with the same shape.

np: number of scan points

i: number of detector pixels in the slow direction

j: number of detector pixels in the fast direction

Groups cited: NXattenuator, NXbeam, NXcollection, NXdata, NXdetector_module, NXdetector, NXentry, NXinstru-
ment, NXsample, NXtransformations

Structure:

(entry): NXentry

title: NX_CHAR

start_time: NX_DATE_TIME

end_time: NX_DATE_TIME

definition: NX_CHAR

NeXus NXDL schema to which this file conforms

Obligatory value: NXmx

(instrument): NXinstrument

(attenuator): NXattenuator

attenuator_transmission: NX_NUMBER {units=NX_UNITLESS}

(detector): NXdetector

depends_on: NX_CHAR

data[np, i, j]: NX_NUMBER

description: NX_CHAR

name/manufacturer/model/etc. information

time_per_channel: NX_CHAR {units=NX_TIME}

todo: define more clearly

distance: NX_FLOAT {units=NX_LENGTH}

254 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXmagnetic_kicker.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Distance from the sample to the beam center. This value is a guidance
only, the proper geometry can be found following the depends_on axis
chain.

dead_time: NX_FLOAT {units=NX_TIME}

Detector dead time

count_time: NX_NUMBER {units=NX_TIME}

Elapsed actual counting time

beam_center_x: NX_FLOAT {units=NX_LENGTH}

This is the x position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

beam_center_y: NX_FLOAT {units=NX_LENGTH}

This is the y position where the direct beam would hit the detector. This
is a length, not a pixel position, and can be outside of the actual detector.

angular_calibration_applied: NX_BOOLEAN

True when the angular calibration has been applied in the electronics,
false otherwise.

angular_calibration[i, j]: NX_FLOAT

Angular calibration data.

flatfield_applied: NX_BOOLEAN

True when the flat field correction has been applied in the electronics,
false otherwise.

flatfield[i, j]: NX_FLOAT

Flat field correction data.

flatfield_error[i, j]: NX_FLOAT

Errors of the flat field correction data.

pixel_mask_applied: NX_BOOLEAN

True when the pixel mask correction has been applied in the electronics,
false otherwise.

pixel_mask[i, j]: NX_INT

The 32-bit pixel mask for the detector. Contains a bit field for each
pixel to signal dead, blind or high or otherwise unwanted or undesirable
pixels. They have the following meaning:

• bit 0: gap (pixel with no sensor)

• bit 1: dead

• bit 2: under responding

• bit 3: over responding

• bit 4: noisy

• bit 5: -undefined-

3.5. Contributed Definitions 255

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• bit 6: pixel is part of a cluster of problematic pixels (bit set in addition
to others)

• bit 7: -undefined-

• bit 8: user defined mask (e.g. around beamstop)

• bits 9-30: -undefined-

• bit 31: virtual pixel (corner pixel with interpolated value)

Normal data analysis software would not take pixels into account when
a bit in (mask & 0x0000FFFF) is set. Tag bit in the upper two
bytes would indicate special pixel properties that normally would not
be a sole reason to reject the intensity value (unless lower bits are set.

countrate_correction__applied: NX_BOOLEAN

True when a count-rate correction has already been applied in the data
recorded here, false otherwise.

bit_depth_readout: NX_INT

How many bits the electronics record per pixel.

detector_readout_time: NX_FLOAT {units=NX_TIME}

Time it takes to read the detector (typically milliseconds). This is im-
portant to know for time resolved experiments.

frame_time: NX_FLOAT {units=NX_TIME}

This is time for each frame. This is exposure_time + readout time.

gain_setting: NX_CHAR

The gain setting of the detector. This influences background.

saturation_value: NX_INT

The value at which the detector goes into saturation. Data above this
value is known to be invalid.

sensor_material: NX_CHAR

At times, radiation is not directly sensed by the detector. Rather, the
detector might sense the output from some converter like a scintillator.
This is the name of this converter material.

sensor_thickness: NX_FLOAT {units=NX_LENGTH}

At times, radiation is not directly sensed by the detector. Rather, the
detector might sense the output from some converter like a scintillator.
This is the thickness of this converter material.

threshold_energy: NX_FLOAT {units=NX_ENERGY}

Single photon counter detectors can be adjusted for a certain energy
range in which they work optimally. This is the energy setting for this.

type: NX_CHAR

Description of type such as scintillator, ccd, pixel, image plate, CMOS,
...

(transformations): NXtransformations

256 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Suggested location for axes (transformations) to do with the detector

(collection): NXcollection

Suggested container for detailed non-standard detector information like
corrections applied automatically or performance settings.

(detector_module): NXdetector_module

This is the description of a detector module. Many detectors consist of
multiple smaller modules. Sometimes it is important to know the exact
position of such modules. This is the purpose of this group. It is a child
group to NXdetector.

data_origin: NX_INT

A two value field which gives the index of the start of the modules
data in the main area detector image in the underlying NXdetector
module.

data_size: NX_INT

Two values for the size of the module in pixels in each direction.

module_offset: NX_NUMBER {units=NX_LENGTH}

Offset of the module in regards to the origin of the detector in an
arbitrary direction.

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_CHAR

@offset: NX_CHAR

@depends_on: NX_CHAR

fast_pixel_direction: NX_NUMBER {units=NX_LENGTH}

Values along the direction of fastest varying pixel direction.The
direction itself is given through the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_CHAR

@offset: NX_CHAR

@depends_on: NX_CHAR

slow_pixel_direction: NX_NUMBER {units=NX_LENGTH}

Values along the direction of slow varying pixel direction. The
direction itself is given through the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_CHAR

@offset: NX_CHAR

@depends_on: NX_CHAR

3.5. Contributed Definitions 257

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

fast_pixel_size: NX_NUMBER {units=NX_LENGTH}

Values along the direction of fastest varying pixel direction.The
direction itself is given through the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_CHAR

@offset: NX_CHAR

@depends_on: NX_CHAR

slow_pixel_size: NX_NUMBER {units=NX_LENGTH}

Values along the direction of slow varying pixel direction. The
direction itself is given through the vector attribute

@transformation_type: NX_CHAR

Obligatory value: translation

@vector: NX_CHAR

@offset: NX_CHAR

@depends_on: NX_CHAR

(sample): NXsample

name: NX_CHAR

Descriptive name of sample

depends_on: NX_CHAR

This should be an absolute requirement to have for any scan experiment. The
reason it is optional is mainly to accommodate XFEL single shot exposures.

temperature: NX_CHAR {units=NX_TEMPERATURE}

(beam): NXbeam

incident_wavelength: NX_NUMBER {units=NX_WAVELENGTH}

flux: NX_FLOAT {units=NX_FLUX}

flux incident on beam plane area

incident_polarisation_stokes[np, 4]: NX_CHAR

incident_wavelength_spectrum: NXdata

(transformations): NXtransformations

Suggested location for sample goniometer or other axes (transformations)

(data): NXdata

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXmx.nxdl.xml

3.5.9 NXquadrupole_magnet

Status:

contributed definition, extends NXobject, version 1.0

258 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXmx.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Description:

definition for a quadrupole magnet.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the magnet.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

set_current: NX_FLOAT {units=NX_CURRENT}

current set on supply.

read_current: NXlog

current read from supply.

value: NX_CHAR {units=NX_CURRENT}

read_voltage: NXlog

voltage read from supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXquadrupole_magnet.nxdl.xml

3.5.10 NXseparator

Status:

contributed definition, extends NXobject, version 1.0

Description:

definition for an electrostatic separator.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the separator.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

set_Bfield_current: NX_FLOAT {units=NX_CURRENT}

current set on magnet supply.

set_Efield_voltage: NX_FLOAT {units=NX_VOLTAGE}

3.5. Contributed Definitions 259

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXquadrupole_magnet.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

current set on HT supply.

read_Bfield_current: NXlog

current read from magnet supply.

value: NX_CHAR {units=NX_CURRENT}

read_Bfield_voltage: NXlog

voltage read from magnet supply.

value: NX_CHAR {units=NX_VOLTAGE}

read_Efield_current: NXlog

current read from HT supply.

value: NX_CHAR {units=NX_CURRENT}

read_Efield_voltage: NXlog

voltage read from HT supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXseparator.nxdl.xml

3.5.11 NXsnsevent

Status:

contributed definition, extends NXobject, version 1.0

Description:

This is a definition for event data from Spallation Neutron Source (SNS) at ORNL.

Symbols:

No symbol table

Groups cited: NXaperture, NXattenuator, NXcollection, NXcrystal, NXdata, NXdetector, NXdisk_chopper, NXentry,
NXevent_data, NXgeometry, NXinstrument, NXlog, NXmoderator, NXmonitor, NXnote, NXorientation, NXpo-
larizer, NXpositioner, NXsample, NXshape, NXsource, NXtranslation, NXuser

Structure:

(entry): NXentry

collection_identifier: NX_CHAR

collection_title: NX_CHAR

definition: NX_CHAR

Official NXDL schema after this file goes to applications.

Obligatory value: NXsnsevent

duration: NX_FLOAT {units=NX_TIME}

end_time: NX_DATE_TIME

entry_identifier: NX_CHAR

experiment_identifier: NX_CHAR

notes: NX_CHAR

260 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXseparator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

proton_charge: NX_FLOAT {units=NX_CHARGE}

raw_frames: NX_INT

run_number: NX_CHAR

start_time: NX_DATE_TIME

title: NX_CHAR

total_counts: NX_UINT {units=NX_UNITLESS}

total_uncounted_counts: NX_UINT {units=NX_UNITLESS}

DASlogs: NXcollection

Details of all logs, both from cvinfo file and from HistoTool (frequency and pro-
ton_charge).

(log): NXlog

average_value: NX_FLOAT

average_value_error: NX_FLOAT

description: NX_CHAR

duration: NX_FLOAT

maximum_value: NX_FLOAT

minimum_value: NX_FLOAT

time[nvalue]: NX_FLOAT

value[nvalue]: NX_FLOAT

(positioner): NXpositioner

Motor logs from cvinfo file.

average_value: NX_FLOAT

average_value_error: NX_FLOAT

description: NX_CHAR

duration: NX_FLOAT

maximum_value: NX_FLOAT

minimum_value: NX_FLOAT

time[numvalue]: NX_FLOAT

value[numvalue]: NX_FLOAT

SNSHistoTool: NXnote

SNSbanking_file_name: NX_CHAR

SNSmapping_file_name: NX_CHAR

author: NX_CHAR

command1: NX_CHAR

Command string for event2nxl.

3.5. Contributed Definitions 261

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

date: NX_CHAR

description: NX_CHAR

version: NX_CHAR

(data): NXdata

data_x_y –> /NXentry/NXinstrument/NXdetector/data_x_y

x_pixel_offset –> /NXentry/NXinstrument/NXdetector/x_pixel_offset

y_pixel_offset –> /NXentry/NXinstrument/NXdetector/y_pixel_offset

(event_data): NXevent_data

event_index –> /NXentry/NXinstrument/NXdetector/event_index

event_pixel_id –> /NXentry/NXinstrument/NXdetector/event_pixel_id

event_time_of_flight –> /NXentry/NXinstrument/NXdetector/event_time_of_flight

pulse_time –> /NXentry/NXinstrument/NXdetector/pulse_time

instrument: NXinstrument

SNSdetector_calibration_id: NX_CHAR

Detector calibration id from DAS.

SNSgeometry_file_name: NX_CHAR

SNStranslation_service: NX_CHAR

beamline: NX_CHAR

name: NX_CHAR

SNS: NXsource

frequency: NX_FLOAT {units=NX_FREQUENCY}

name: NX_CHAR

probe: NX_CHAR

type: NX_CHAR

(detector): NXdetector

azimuthal_angle[numx, numy]: NX_FLOAT {units=NX_ANGLE}

data_x_y[numx, numy]: NX_UINT

expect signal=2 axes="x_pixel_offset,y_pixel_offset“

distance[numx, numy]: NX_FLOAT {units=NX_LENGTH}

event_index[numpulses]: NX_UINT

event_pixel_id[numevents]: NX_UINT

event_time_of_flight[numevents]: NX_FLOAT
{units=NX_TIME_OF_FLIGHT}

pixel_id[numx, numy]: NX_UINT

polar_angle[numx, numy]: NX_FLOAT {units=NX_ANGLE}

pulse_time[numpulses]: NX_FLOAT {units=NX_TIME}

262 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

total_counts: NX_UINT

x_pixel_offset[numx]: NX_FLOAT {units=NX_LENGTH}

y_pixel_offset[numy]: NX_FLOAT {units=NX_LENGTH}

origin: NXgeometry

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size[3]: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(disk_chopper): NXdisk_chopper

distance: NX_FLOAT {units=NX_LENGTH}

moderator: NXmoderator

coupling_material: NX_CHAR

distance: NX_FLOAT {units=NX_LENGTH}

temperature: NX_FLOAT {units=NX_TEMPERATURE}

type: NX_CHAR

(aperture): NXaperture

x_pixel_offset: NX_FLOAT {units=NX_LENGTH}

origin: NXgeometry

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size[3]: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(attenuator): NXattenuator

distance: NX_FLOAT {units=NX_LENGTH}

(polarizer): NXpolarizer

(crystal): NXcrystal

3.5. Contributed Definitions 263

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

type: NX_CHAR

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

origin: NXgeometry

description: NX_CHAR

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(monitor): NXmonitor

data[numtimechannels]: NX_UINT

expect signal=1 axes="time_of_flight"

distance: NX_FLOAT {units=NX_LENGTH}

mode: NX_CHAR

time_of_flight[numtimechannels + 1]: NX_FLOAT {units=NX_TIME}

sample: NXsample

changer_position: NX_CHAR

holder: NX_CHAR

identifier: NX_CHAR

name: NX_CHAR

Descriptive name of sample

nature: NX_CHAR

(user): NXuser

facility_user_id: NX_CHAR

name: NX_CHAR

role: NX_CHAR

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsnsevent.nxdl.xml

3.5.12 NXsnshisto

Status:

contributed definition, extends NXobject, version 1.0

Description:

264 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsnsevent.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

This is a definition for histogram data from Spallation Neutron Source (SNS) at ORNL.

Symbols:

No symbol table

Groups cited: NXaperture, NXattenuator, NXcollection, NXcrystal, NXdata, NXdetector, NXdisk_chopper, NXen-
try, NXfermi_chopper, NXgeometry, NXinstrument, NXlog, NXmoderator, NXmonitor, NXnote, NXorientation,
NXpolarizer, NXpositioner, NXsample, NXshape, NXsource, NXtranslation, NXuser

Structure:

(entry): NXentry

collection_identifier: NX_CHAR

collection_title: NX_CHAR

definition: NX_CHAR

Official NXDL schema after this file goes to applications.

Obligatory value: NXsnshisto

duration: NX_FLOAT {units=NX_TIME}

end_time: NX_DATE_TIME

entry_identifier: NX_CHAR

experiment_identifier: NX_CHAR

notes: NX_CHAR

proton_charge: NX_FLOAT {units=NX_CHARGE}

raw_frames: NX_INT

run_number: NX_CHAR

start_time: NX_DATE_TIME

title: NX_CHAR

total_counts: NX_UINT {units=NX_UNITLESS}

total_uncounted_counts: NX_UINT {units=NX_UNITLESS}

DASlogs: NXcollection

Details of all logs, both from cvinfo file and from HistoTool (frequency and pro-
ton_charge).

(log): NXlog

average_value: NX_FLOAT

average_value_error: NX_FLOAT

description: NX_CHAR

duration: NX_FLOAT

maximum_value: NX_FLOAT

minimum_value: NX_FLOAT

time[nvalue]: NX_FLOAT

value[nvalue]: NX_FLOAT

3.5. Contributed Definitions 265

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(positioner): NXpositioner

Motor logs from cvinfo file.

average_value: NX_FLOAT

average_value_error: NX_FLOAT

description: NX_CHAR

duration: NX_FLOAT

maximum_value: NX_FLOAT

minimum_value: NX_FLOAT

time[numvalue]: NX_FLOAT

value[numvalue]: NX_FLOAT

SNSHistoTool: NXnote

SNSbanking_file_name: NX_CHAR

SNSmapping_file_name: NX_CHAR

author: NX_CHAR

command1: NX_CHAR

Command string for event2histo_nxl.

date: NX_CHAR

description: NX_CHAR

version: NX_CHAR

(data): NXdata

data –> /NXentry/NXinstrument/NXdetector/data

data_x_time_of_flight –> /NXentry/NXinstrument/NXdetector/data_x_time_of_flight

data_x_y –> /NXentry/NXinstrument/NXdetector/data_x_y

data_y_time_of_flight –> /NXentry/NXinstrument/NXdetector/data_y_time_of_flight

pixel_id –> /NXentry/NXinstrument/NXdetector/pixel_id

time_of_flight –> /NXentry/NXinstrument/NXdetector/time_of_flight

total_counts –> /NXentry/NXinstrument/NXdetector/total_counts

x_pixel_offset –> /NXentry/NXinstrument/NXdetector/x_pixel_offset

y_pixel_offset –> /NXentry/NXinstrument/NXdetector/y_pixel_offset

instrument: NXinstrument

SNSdetector_calibration_id: NX_CHAR

Detector calibration id from DAS.

SNSgeometry_file_name: NX_CHAR

SNStranslation_service: NX_CHAR

beamline: NX_CHAR

name: NX_CHAR

266 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

SNS: NXsource

frequency: NX_FLOAT {units=NX_FREQUENCY}

name: NX_CHAR

probe: NX_CHAR

type: NX_CHAR

(detector): NXdetector

azimuthal_angle[numx, numy]: NX_FLOAT {units=NX_ANGLE}

data[numx, numy, numtof]: NX_UINT

data_x_time_of_flight[numx, numtof]: NX_UINT

data_x_y[numx, numy]: NX_UINT

data_y_time_of_flight[numy, numtof]: NX_UINT

distance[numx, numy]: NX_FLOAT {units=NX_LENGTH}

pixel_id[numx, numy]: NX_UINT

polar_angle[numx, numy]: NX_FLOAT {units=NX_ANGLE}

time_of_flight[numtof + 1]: NX_FLOAT {units=NX_TIME_OF_FLIGHT}

total_counts: NX_UINT

x_pixel_offset[numx]: NX_FLOAT {units=NX_LENGTH}

y_pixel_offset[numy]: NX_FLOAT {units=NX_LENGTH}

origin: NXgeometry

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size[3]: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(disk_chopper): NXdisk_chopper

Original specification called for NXchopper, which is not a valid NeXus base
class. Select either NXdisk_chopper or NXfermi_chopper, as appropriate.

distance: NX_FLOAT {units=NX_LENGTH}

(fermi_chopper): NXfermi_chopper

Original specification called for NXchopper, which is not a valid NeXus base
class. Select either NXdisk_chopper or NXfermi_chopper, as appropriate.

distance: NX_FLOAT {units=NX_LENGTH}

moderator: NXmoderator

3.5. Contributed Definitions 267

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

coupling_material: NX_CHAR

distance: NX_FLOAT {units=NX_LENGTH}

temperature: NX_FLOAT {units=NX_TEMPERATURE}

type: NX_CHAR

(aperture): NXaperture

x_pixel_offset: NX_FLOAT {units=NX_LENGTH}

origin: NXgeometry

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size[3]: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(attenuator): NXattenuator

distance: NX_FLOAT {units=NX_LENGTH}

(polarizer): NXpolarizer

(crystal): NXcrystal

type: NX_CHAR

wavelength: NX_FLOAT {units=NX_WAVELENGTH}

origin: NXgeometry

description: NX_CHAR

orientation: NXorientation

value[6]: NX_FLOAT

Six out of nine rotation parameters.

shape: NXshape

description: NX_CHAR

shape: NX_CHAR

size: NX_FLOAT {units=NX_LENGTH}

translation: NXtranslation

distance[3]: NX_FLOAT {units=NX_LENGTH}

(monitor): NXmonitor

268 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

data[numtimechannels]: NX_UINT

distance: NX_FLOAT {units=NX_LENGTH}

mode: NX_CHAR

time_of_flight[numtimechannels + 1]: NX_FLOAT {units=NX_TIME}

sample: NXsample

changer_position: NX_CHAR

holder: NX_CHAR

identifier: NX_CHAR

name: NX_CHAR

Descriptive name of sample

nature: NX_CHAR

(user): NXuser

facility_user_id: NX_CHAR

name: NX_CHAR

role: NX_CHAR

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsnshisto.nxdl.xml

3.5.13 NXsolenoid_magnet

Status:

contributed definition, extends NXobject, version 1.0

Description:

definition for a solenoid magnet.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the magnet.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

set_current: NX_FLOAT {units=NX_CURRENT}

current set on supply.

read_current: NXlog

current read from supply.

value: NX_CHAR {units=NX_CURRENT}

read_voltage: NXlog

3.5. Contributed Definitions 269

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsnshisto.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

voltage read from supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsolenoid_magnet.nxdl.xml

3.5.14 NXspin_rotator

Status:

contributed definition, extends NXobject, version 1.0

Description:

definition for a spin rotator.

Symbols:

No symbol table

Groups cited: NXlog

Structure:

description: NX_CHAR

extended description of the spin rotator.

beamline_distance: NX_FLOAT {units=NX_LENGTH}

define position of beamline element relative to production target

set_Bfield_current: NX_FLOAT {units=NX_CURRENT}

current set on magnet supply.

set_Efield_voltage: NX_FLOAT {units=NX_VOLTAGE}

current set on HT supply.

read_Bfield_current: NXlog

current read from magnet supply.

value: NX_CHAR {units=NX_CURRENT}

read_Bfield_voltage: NXlog

voltage read from magnet supply.

value: NX_CHAR {units=NX_VOLTAGE}

read_Efield_current: NXlog

current read from HT supply.

value: NX_CHAR {units=NX_CURRENT}

read_Efield_voltage: NXlog

voltage read from HT supply.

value: NX_CHAR {units=NX_VOLTAGE}

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXspin_rotator.nxdl.xml

270 Chapter 3. NeXus: Reference Documentation

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXsolenoid_magnet.nxdl.xml
https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXspin_rotator.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.5.15 NXtransformations

Status:

contributed definition, extends NXobject, version 1.0

Description:

Use NXtransformations to gather together any set of movable or fixed elements positioning the
device described by the class that contains this.

Symbols:

No symbol table

Groups cited: none

Structure:

anonymous__NEEDS_XSD_CHANGE__: NX_NUMBER

Units need to be appropriate for translation or rotation

@transformation_type: NX_CHAR

Any of these values: translation | rotation

@vector: NX_NUMBER

Three values that define the axis for this transformation

@offset: NX_NUMBER

A fixed offset applied before the transformation (three vector components).

@offset_units: NX_CHAR

Units of the offset.

@depends_on: NX_CHAR

Points to the path of the next element in the geometry chain.

Source: Automatically generated from https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXtransformations.nxdl.xml

3.5. Contributed Definitions 271

https://github.com/nexusformat/definitions/blob/master/contributed_definitions/NXtransformations.nxdl.xml

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

272 Chapter 3. NeXus: Reference Documentation

CHAPTER

FOUR

NAPI: NEXUS APPLICATION
PROGRAMMER INTERFACE (FROZEN)

4.1 Status

This application program interface (API) was developed to support the reading and writing of NeXus files through
unified function calls, regardless of the physical data format (XML, HDF4, HDF5).

In the meantime it has been decided that active development of NeXus definitions and tools will concentrate on HDF5
as the only supported physical data format. It is expected that most application developers will use standard HDF5 tools
to read and write NeXus. Two examples are provided in Example NeXus C programs using native HDF5 commands.

Therefore, the decision has been taken to freeze the NAPI. Maintenance is reduced to bug fixes.

4.2 Overview

The core routines have been written in C but wrappers are available for a number of other languages including C++,
Fortran 77, Fortran 90, Java, Python and IDL. The API makes the reading and writing of NeXus files transparent; the
user doesn’t even need to know the underlying format when reading a file since the API calls are the same.

More in-depth and up-to-date information about the NeXus Application Programming Interface for the various lan-
guage backends is available on-line from http://download.nexusformat.org.

The NeXusIntern.pdf document (http://svn.nexusformat.org/code/trunk/doc/api/NeXusIntern.pdf) describes the inter-
nal workings of the NeXus-API. You are very welcome to read it, but it will not be of much use if all you want is to
read and write files using the NAPI.

The NeXus Application Program Interface call routines in the appropriate backend (HDF4, HDF5 or XML) to read
and write files with the correct structure. The API serves a number of purposes:

1. It simplifies the reading and writing of NeXus files.

2. It ensures a certain degree of compliance with the NeXus standard.

3. It hides the implementation details of the format. In particular, the API can read and write HDF4, HDF5, and
XML files using the same routines.

273

http://download.nexusformat.org
http://svn.nexusformat.org/code/trunk/doc/api/NeXusIntern.pdf

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4.3 Core API

The core API provides the basic routines for reading, writing and navigating NeXus files. Operations are performed
using a handle that keeps a record of its current position in the file hierarchy. All are read or write requests are then
implicitly performed on the currently open entity. This limits number of parameters that need to be passed to API
calls, at the cost of forcing a certain mode of operation. It is very similar to navigating a directory hierarchy; NeXus
groups are the directories, which can contain data sets and/or other directories.

The core API comprises the following functional groups:

• General initialization and shutdown: opening and closing the file, creating or opening an existing group or
dataset, and closing them.

• Reading and writing data and attributes to previously opened datasets.

• Routines to obtain meta-data and to iterate over component datasets and attributes.

• Handling of linking and group hierarchy.

• Routines to handle memory allocation. (Not required in all language bindings.)

4.3.1 NAPI C and C++ Interface

Doxygen documentation is provided online:

C http://download.nexusformat.org/doxygen/html-c/

C++ http://download.nexusformat.org/doxygen/html-cpp/

4.3.2 NAPI Fortran 77 Interface

Doxygen documentation is provided for the f77 NAPI. (http://download.nexusformat.org/doxygen/html-f77/)

4.3.3 NAPI Fortran 90 Interface

The Fortran 90 interface is a wrapper to the C interface with nearly identical routine definitions. As with the Fortran
77 interface, it is necessary to reverse the order of indices in multidimensional arrays, compared to an equivalent C
program, so that data are stored in the same order in the NeXus file.

Any program using the F90 API needs to put the following line at the top (after the PROGRAM statement):

use NXmodule

Use the following table to convert from the C data types listed with each routine to the Fortran 90 data types.

C data type F90 data type
int, int integer
char* character(len=*)
NXhandle, NXhandle* type(NXhandle)
NXstatus integer
int[] integer(:)
void* real(:) or integer(:) or character(len=*)
NXlink a, NXlink* a type(NXlink)

The parameters in the next table, defined in NXmodule, may be used in defining variables.

274 Chapter 4. NAPI: NeXus Application Programmer Interface (frozen)

http://download.nexusformat.org/doxygen/html-c/
http://download.nexusformat.org/doxygen/html-cpp/
http://download.nexusformat.org/doxygen/html-f77/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Name Description Value
NX_MAXRANK Maximum number of dimensions 32
NX_MAXNAMELEN Maximum length of NeXus name 64
NXi1 Kind parameter for a 1-byte integer selected_int_kind(2)
NXi2 Kind parameter for a 2-byte integer selected_int_kind(4)
NXi4 Kind parameter for a 4-byte integer selected_int_kind(8)
NXr4 Kind parameter for a 4-byte real kind(1.0)
NXr8 Kind parameter for an 8-byte real kind(1.0D0)

Also see the doxygen documentation. (http://download.nexusformat.org/doxygen/html-f90/)

4.3.4 NAPI Java Interface

This section includes installation notes, instructions for running NeXus for Java programs and a brief introduction to
the API.

The Java API for NeXus (jnexus) was implemented through the Java Native Interface (JNI) to call on to the native
C library. This has a number of disadvantages over using pure Java, however the most popular file backend HDF5 is
only available using a JNI wrapper anyway.

Acknowledgement

This implementation uses classes and native methods from NCSA’s Java HDF Interface project. Basically all con-
versions from native types to Java types is done through code from the NCSA HDF group. Without this code the
implementation of this API would have taken much longer. See NCSA’s copyright for more information.

Installation

Requirements

Caution: Documentation is old and may need revision.

For running an application with jnexus an recent Java runtime environment (JRE) will do.

In order to compile the Java API for NeXus a Java Development Kit is required on top of the build requirements for
the C API.

Installation under Windows

1. Copy the HDF DLL’s and the file jnexus.dll to a directory in your path. For instance
C:\\Windows\\system32.

2. Copy the jnexus.jar to the place where you usually keep library jar files.

Note that the location or the naming of these files in the binary Nexus distributions have changed over the years.
In the Nexus 4.3.0 Windows 64-bit distribution (http://download.nexusformat.org/kits/4.3.0/win64/), By default, the
DLL is at: C:\Program Files\NeXus Data Format\bin\libjnexus-0.dll. Please rename this file
to jnexus.dll before making it available in your path. This is important, otherwise, JVM runtime will not be able
to locate this file.

For the same distribution, the location of jnexus.jar is at: C:\Program Files\NeXus Data
Format\share\java.

4.3. Core API 275

http://download.nexusformat.org/doxygen/html-f90/
http://download.nexusformat.org/kits/4.3.0/win64/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Installation under Unix

The jnexus.so shared library as well as all required file backend .so libraries are required as well as the
jnexus.jar file holding the required Java classes. Copy them wherever you like and see below for instructions
how to run programs using jnexus.

Running Programs with the NeXus API for Java

In order to successfully run a program with jnexus, the Java runtime systems needs to locate two items:

1. The shared library implementing the native methods.

2. The nexus.jar file in order to find the Java classes.

Locating the shared libraries

The methods for locating a shared library differ between systems. Under Windows32 systems the best method is to
copy the jnexus.dll and the HDF4, HDF5 and/or XML-library DLL files into a directory in your path.

On a UNIX system, the problem can be solved in three different ways:

1. Make your system administrator copy the jnexus.so file into the systems default shared library directory
(usually /usr/lib or /usr/local/lib).

2. Put the jnexus.so file wherever you see fit and set the LD_LIBRARY_PATH environment variable to point
to the directory of your choice.

3. Specify the full pathname of the jnexus shared library on the java command line with the
-Dorg.nexusformat.JNEXUSLIB=full-path-2-shared-library option.

Locating jnexus.jar

This is easier, just add the the full pathname to jnexus.jar to the classpath when starting java. Here are examples
for a UNIX shell and the Windows shell.

UNIX example shell script to start jnexus.jar

1 #!/sbin/sh
2 java -classpath /usr/lib/classes.zip:../jnexus.jar:. \
3 -Dorg.nexusformat.JNEXUSLIB=../libjnexus.so TestJapi

Windows 32 example batch file to start jnexus.jar

1 set JL=-Dorg.nexusformat.JNEXUSLIB=..\jnexus\bin\win32\jnexus.dll

2 java -classpath C:\jdk1.5\lib\classes.zip;..\jnexus.jar;. %JL% TestJapi

Programming with the NeXus API for Java

The NeXus C-API is good enough but for Java a few adaptions of the API have been made in order to match the API
better to the idioms used by Java programmers. In order to understand the Java-API, it is useful to study the NeXus

276 Chapter 4. NAPI: NeXus Application Programmer Interface (frozen)

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

C-API because many methods work in the same way as their C equivalents. A full API documentation is available in
Java documentation format. For full reference look especially at:

• The interface NeXusFileInterface first. It gives an uncluttered view of the API.

• The implementation NexusFilewhich gives more details about constructors and constants. However this doc-
umentation is interspersed with information about native methods which should not be called by an application
programmer as they are not part of the standard and might change in future.

See the following code example for opening a file, opening a vGroup and closing the file again in order to get a feeling
for the API:

fragment for opening and closing

1 try{
2 NexusFile nf = new NexusFile(filename, NexusFile.NXACC_READ);
3 nf.opengroup("entry1","NXentry");
4 nf.finalize();
5 }catch(NexusException ne) {
6 // Something was wrong!
7 }

Some notes on this little example:

• Each NeXus file is represented by a NexusFile object which is created through the constructor.

• The NexusFile object takes care of all file handles for you. So there is no need to pass in a handle anymore
to each method as in the C language API.

• All error handling is done through the Java exception handling mechanism. This saves all the code checking
return values in the C language API. Most API functions return void.

• Closing files is tricky. The Java garbage collector is supposed to call the finalize method for each object it decides
to delete. In order to enable this mechanism, the NXclose() function was replaced by the finalize()
method. In practice it seems not to be guaranteed that the garbage collector calls the finalize() method.
It is safer to call finalize() yourself in order to properly close a file. Multiple calls to the finalize()
method for the same object are safe and do no harm.

Data Writing and Reading

Again a code sample which shows how this looks like:

fragment for writing and reading

1 int idata[][] = new idata[10][20];
2 int iDim[] = new int[2];
3

4 // put some data into idata.......
5

6 // write idata
7 iDim[0] = 10;
8 iDim[1] = 20;
9 nf.makedata("idata",NexusFile.NX_INT32,2,iDim);

10 nf.opendata("idata");
11 nf.putdata(idata);
12

4.3. Core API 277

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

13 // read idata
14 nf.getdata(idata);

The dataset is created as usual with makedata() and opened with putdata(). The trick is in putdata(). Java
is meant to be type safe. One would think then that a putdata() method would be required for each Java data type.
In order to avoid this, the data to write() is passed into putdata() as type Object. Then the API proceeds to
analyze this object through the Java introspection API and convert the data to a byte stream for writing through the
native method call. This is an elegant solution with one drawback: An array is needed at all times. Even if only a
single data value is written (or read) an array of length one and an appropriate type is the required argument.

Another issue are strings. Strings are first class objects in Java. HDF (and NeXus) sees them as dumb arrays of bytes.
Thus strings have to be converted to and from bytes when reading string data. See a writing example:

String writing

1 String ame = "Alle meine Entchen";
2 nf.makedata("string_data",NexusFile.NX_CHAR,
3 1,ame.length()+2);
4 nf.opendata("string_data");
5 nf.putdata(ame.getBytes());

And reading:

String reading

1 String ame = "Alle meine Entchen";
2 nf.makedata("string_data",NexusFile.NX_CHAR,
3 1,ame.length()+2);
4 nf.opendata("string_data");
5 nf.putdata(ame.getBytes());

The aforementioned holds for all strings written as SDS content or as an attribute. SDS or vGroup names do not need
this treatment.

Inquiry Routines

Let us compare the C-API and Java-API signatures of the getinfo() routine (C) or method (Java):

C API signature of getinfo()

1 /* C -API */
2 NXstatus NXgetinfo(NXhandle handle, int *rank, int iDim[],
3 int *datatype);

Java API signature of getinfo()

1 // Java
2 void getinfo(int iDim[], int args[]);

278 Chapter 4. NAPI: NeXus Application Programmer Interface (frozen)

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The problem is that Java passes arguments only by value, which means they cannot be modified by the method. Only
array arguments can be modified. Thus args in the getinfo() method holds the rank and datatype information
passed in separate items in the C-API version. For resolving which one is which, consult a debugger or the API-
reference.

The attribute and vGroup search routines have been simplified using Hashtables. The Hashtable returned by
groupdir() holds the name of the item as a key and the classname or the string SDS as the stored object for
the key. Thus the code for a vGroup search looks like this:

vGroup search

1 nf.opengroup(group,nxclass);
2 h = nf.groupdir();
3 e = h.keys();
4 System.out.println("Found in vGroup entry:");
5 while(e.hasMoreElements())
6 {
7 vname = (String)e.nextElement();
8 vclass = (String)h.get(vname);
9 System.out.println(" Item: " + vname + " class: " + vclass);

10 }

For an attribute search both at global or SDS level the returned Hashtable will hold the name as the key and a little
class holding the type and size information as value. Thus an attribute search looks like this in the Java-API:

attribute search

1 Hashtable h = nf.attrdir();
2 Enumeration e = h.keys();
3 while(e.hasMoreElements())
4 {
5 attname = (String)e.nextElement();
6 atten = (AttributeEntry)h.get(attname);
7 System.out.println("Found global attribute: " + attname +
8 " type: "+ atten.type + " ,length: " + atten.length);
9 }

For more information about the usage of the API routines see the reference or the NeXus C-API reference pages.
Another good source of information is the source code of the test program which exercises each API routine.

Known Problems

These are a couple of known problems which you might run into:

Memory As the Java API for NeXus has to convert between native and Java number types a copy of the data must
be made in the process. This means that if you want to read or write 200MB of data your memory requirement
will be 400MB! This can be reduced by using multiple getslab()/putslab() to perform data transfers in
smaller chunks.

Java.lang.OutOfMemoryException By default the Java runtime has a low default value for the maximum
amount of memory it will use. This ceiling can be increased through the -mxXXm option to the Java runtime.
An example: java -mx512m ... starts the Java runtime with a memory ceiling of 512MB.

4.3. Core API 279

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Maximum 8192 files open The NeXus API for Java has a fixed buffer for file handles which allows only 8192
NeXus files to be open at the same time. If you ever hit this limit, increase the MAXHANDLE define in
native/handle.h and recompile everything.

On-line Documentation

The following documentation is browsable online:

1. The Doxygen API documentation 1

2. A verbose tutorial for the NeXus for Java API.

3. The API Reference.

4. Finally, the source code for the test driver for the API which also serves as a documented usage example.

4.3.5 NAPI Python Interface

Documentation available in pydoc and doxygen. (http://download.nexusformat.org/doxygen/html-python)

4.3.6 NAPI IDL Interface

IDL is an interactive data evaluation environment developed by Research Systems - it is an interpreted language for
data manipulation and visualization. The NeXus IDL bindings allow access to the NeXus API from within IDL - they
are installed when NeXus is compiled from source after being configured with the following options:

configure \
--with-idlroot=/path/to/idl/installation \
--with-idldlm=/path/to/install/dlm/files/to

For further details see the README (http://htmlpreview.github.com/?https://github.com/nexusformat/code/blob/master/bindings/idl/README.html)
for the NeXus IDL binding.

4.4 Utility API

The NeXus F90 Utility API provides a number of routines that combine the operations of various core API routines
in order to simplify the reading and writing of NeXus files. At present, they are only available as a Fortran 90 module
but a C version is in preparation.

The utility API comprises the following functional groups:

• Routines to read or write data.

• Routines to find whether or not groups, data, or attributes exist, and to find data with specific signal or axis
attributes, i.e. to identify valid data or axes.

• Routines to open other groups to which NXdata items are linked, and to return again.

1 http://download.nexusformat.org/doxygen/html-java/

280 Chapter 4. NAPI: NeXus Application Programmer Interface (frozen)

http://download.nexusformat.org/doxygen/html-python
http://htmlpreview.github.com/?https://github.com/nexusformat/code/blob/master/bindings/idl/README.html
http://download.nexusformat.org/doxygen/html-java/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

line required for use with F90 API

Any program using the F90 Utility API needs to put the following line near the top of the program:

use NXUmodule

Note: Do not put USE statements for both NXmodule and NXUmodule. The former is included in the latter

4.4.1 List of F90 Utility Routines

name description
Reading and Writing
NXUwriteglobals Writes all the valid global attributes of a file.
NXUwritegroup Opens a group (creating it if necessary).
NXUwritedata Opens a data item (creating it if necessary) and writes data and its units.
NXUreaddata Opens and reads a data item and its units.
NXUwritehistogramOpens one dimensional data item (creating it if necessary) and writes histogram centers

and their units.
NXUreadhistogram Opens and reads a one dimensional data item and converts it to histogram bin boundaries.
NXUsetcompress Defines the compression algorithm and minimum dataset size for subsequent write

operations.
Finding Groups, Data, and Attributes
NXUfindclass Returns the name of a group of the specified class if it is contained within the currently

open group.
NXUfinddata Checks whether a data item of the specified name is contained within the currently open

group.
NXUfindattr Checks whether the currently open data item has the specified attribute.
NXUfindsignal Searches the currently open group for a data item with the specified SIGNAL attribute.
NXUfindaxis Searches the currently open group for a data item with the specified AXIS attribute.
Finding Linked Groups
NXUfindlink Finds another link to the specified NeXus data item and opens the group it is in.
NXUresumelink Reopens the original group from which NXUfindlink was used.

Currently, the F90 utility API will only write character strings, 4-byte integers and reals, and 8-byte reals. It can read
other integer sizes into four-byte integers, but does not differentiate between signed and unsigned integers.

4.5 Building Programs

The install kit provides a utility call nxbuild that can be used to build simple programs:

nxbuild -o test test.c

This script links in the various libraries for you and reading its contents would provide the necessary information for
creating a separate Makefile. You can also use nxbuild with the example files in the NeXus distribution kit which
are installed into /usr/local/nexus/examples

Note that the executable name is important in this case as the test program uses it internally to determine the
NXACC_CREATE* argument to pass to NXopen.

4.5. Building Programs 281

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

building and running a simple NeXus program

builds HDF5 specific test
nxbuild -o napi_test-hdf5 napi_test.c

runs the test
./napi_test-hdf5

NeXus is also set up for pkg-config so the build can be done as:

gcc ‘pkg-config --cflags‘ ‘pkg-config --libs‘ -o test test.c

4.6 Reporting Bugs in the NeXus API

If you encounter any bugs in the installation or running of the NeXus API, please report them online using our Issue
Reporting system. (http://www.nexusformat.org/IssueReporting)

282 Chapter 4. NAPI: NeXus Application Programmer Interface (frozen)

http://www.nexusformat.org/IssueReporting

CHAPTER

FIVE

NEXUS COMMUNITY

NeXus began as a group of scientists with the goal of defining a common data storage format to exchange experimental
results and to exchange ideas about how to analyze them.

The NeXus Scientific Community provides the scientific data, advice, and continued involvement with the NeXus
standard. NeXus provides a forum for the scientific community to exchange ideas in data storage through the NeXus
wiki.

The NeXus International Advisory Committee (NIAC) supervises the development and maintenance of the NeXus
common data format for neutron, X-ray, and muon science. The NIAC supervises a technical committee to oversee
the NeXus Application Programmer Interface (NAPI) and the NeXus class definitions.

There are several mechanisms in place in order to coordinate the development of NeXus with the larger community.

5.1 NeXus Wiki

First of all, there is the NeXus wiki, http://wiki.nexusformat.org/, which provides all kinds of information, including
membership, minutes, and discussions from the meetings of the NIAC and Technical Committee Code Camps, pro-
posed designs for consideration by NeXus, the NeXus logo, as well as some legacy documentation that we have not
quite managed to move into the manual.

5.2 Contributed Definitions

The community is encouraged to provide new definitions (Base Class Definitions or Application Definitions) for con-
sideration in the NeXus standard. These community contributions will be entered in the Contributed Definitions and
will be curated according to procedures set forth by the NIAC: The NeXus International Advisory Committee.

5.3 Other Ways NeXus Coordinates with the Scientific Community

5.3.1 NIAC: The NeXus International Advisory Committee

The purpose of the NeXus International Advisory Committee (NIAC) 1 is to supervise the development and main-
tenance of the NeXus common data format for neutron, X-ray, and muon science. This purpose includes, but is not
limited to, the following activities.

1 For more details about the NIAC constitution, procedures, and meetings, refer to the NIAC wiki page: http://wiki.nexusformat.org/NIAC The
members of the NIAC may be reached by email: nexus-committee@nexusformat.org

283

http://wiki.nexusformat.org/
http://wiki.nexusformat.org/NIAC
mailto:nexus-committee@nexusformat.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1. To establish policies concerning the definition, use, and promotion of the NeXus format.

2. To ensure that the specification of the NeXus format is sufficiently complete and clear for its use in the exchange
and archival of neutron, X-ray, and muon data.

3. To receive and examine all proposed amendments and extensions to the NeXus format. In particular, to ratify
proposed instrument and group class definitions, to ensure that the data structures conform to the basic NeXus
specification, and to ensure that the definitions of data items are clear and unambiguous and conform to accepted
scientific usage.

4. To ensure that documentation of the NeXus format is sufficient, current, and available to potential users both on
the internet and in other forms.

5. To coordinate with the developers of the NeXus Application Programming Interface to ensure that it supports
the use of the NeXus format in the neutron, X-ray, and muon communities, and to promote other software
development that will benefit users of the NeXus format.

6. To coordinate with other organizations that maintain and develop related data formats to ensure maximum
compatibility.

The committee will meet at least once every other calendar year according to the following plan:

• In years coinciding with the NOBUGS series of conferences (once every two years), members of the entire
NIAC will meet as a satellite meeting to NOBUGS, along with interested members of the community.

• In intervening years, the executive officers of the NIAC will attend, along with interested members of the NIAC.
This is intended to be a working meeting with a small group.

5.3.2 NeXus Mailing List

We invite anyone who is associated with neutron and/or X-ray synchrotron science and who wishes to be involved in
the development and testing of the NeXus format to subscribe to this list. It is for the free discussion of all aspects of
the design and operation of the NeXus format.

• List Address: nexus@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus

• Archive: http://lists.nexusformat.org/pipermail/nexus

5.3.3 NeXus International Advisory Committee (NIAC) Mailing List

This list contains discussions of the NIAC: The NeXus International Advisory Committee, which oversees the develop-
ment of the NeXus data format. Its members represent many of the major neutron and synchrotron scattering sources
in the world. Membership and posting to this list are limited to the committee members, but the archives are public.

• List Address: nexus-committee@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-committee

• Archive: http://lists.nexusformat.org/pipermail/nexus-committee

5.3.4 NeXus Developers Mailing List (retired)

This mailing list was for discussions concerning the technical development of NeXus (the Definitions, NXDL, and the
NeXus Application Program Interface). There was, however, much overlap with the general NeXus mailing list and
so this separate list was closed in October 2012, but the archive of previous posting is still available.

• Archive: http://lists.nexusformat.org/pipermail/nexus-developers

284 Chapter 5. NeXus Community

mailto:nexus@nexusformat.org
http://lists.nexusformat.org/mailman/listinfo/nexus
http://lists.nexusformat.org/pipermail/nexus
mailto:nexus-committee@nexusformat.org
http://lists.nexusformat.org/mailman/listinfo/nexus-committee
http://lists.nexusformat.org/pipermail/nexus-committee
http://lists.nexusformat.org/pipermail/nexus-developers

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5.3.5 NeXus Repositories

NeXus NXDL class definitions (both base classes and application definitions) and the NeXus code library source are
held in a pair of git repositories on GitHub.

The repositories are world readable. You can browse them directly:

NeXus code library and applications https://github.com/nexusformat/code

NeXus NXDL class definitions https://github.com/nexusformat/definitions

If you would like to contribute (thank you!), the normal GitHub procedure of forking the repository and generating
pull requests should be used.

Please report any problems via the Issue Reporting system.

5.3.6 NeXus Issue Reporting

NeXus is using GitHUb (https://github.com) as source code repository and for problem reporting. The issue reports
(see View current issues below) are used to guide the NeXus developers in resolving problems as well as implementing
new features.

NeXus Code (NAPI, Library, and Applications)

Report a new issue https://github.com/nexusformat/code/issues/new

View current issues https://github.com/nexusformat/code/issues

Timeline (recent ticket and code changes) https://github.com/nexusformat/code/pulse

NeXus Definitions (NXDL base classes and application definitions)

Report a new issue https://github.com/nexusformat/definitions/issues/new

View current issues https://github.com/nexusformat/definitions/issues

Timeline (recent ticket and definition changes) https://github.com/nexusformat/definitions/pulse

5.3. Other Ways NeXus Coordinates with the Scientific Community 285

https://github.com/nexusformat/code
https://github.com/nexusformat/definitions
https://github.com
https://github.com/nexusformat/code/issues/new
https://github.com/nexusformat/code/issues
https://github.com/nexusformat/code/pulse
https://github.com/nexusformat/definitions/issues/new
https://github.com/nexusformat/definitions/issues
https://github.com/nexusformat/definitions/pulse

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

286 Chapter 5. NeXus Community

CHAPTER

SIX

INSTALLATION

This section describes how to install the NeXus API and details the requirements. The NeXus API is distributed under
the terms of the GNU Lesser General Public License version 3.

The source code and binary versions for some popular platforms can be found on
http://download.nexusformat.org/kits/. Up to date instructions can be found on the NeXus Wiki Download page
(http://www.nexusformat.org/Download). In case you need help, feel free to contact the NeXus mailing list:
http://lists.nexusformat.org/mailman/listinfo/nexus

6.1 Precompiled Binary Installation

6.1.1 Prerequisites

HDF5/HDF4

Note: HDF5 is the preferred format to use for NeXus.

NeXus uses HDF5 as the main underlying binary format. (HDF4 is supported as a legacy underlying binary format but
is not recommended for new use.) It is necessary first to install the HDF subroutine libraries and include files before
compiling the NeXus API. It is not usually necessary to download the HDF source code since precompiled object
libraries exist for a variety of operating systems including Windows, Mac OS X, Linux, and various other flavors of
Unix. Check the HDF web pages for more information: http://www.hdfgroup.org/

Packages for HDF4 and HDF5 are available for both Fedora (hdf, hdf5, hdf-devel, hdf5-devel) and Ubuntu/Debian
(libhdf4g, libhdf5).

XML

Note: XML is not the preferred format to use for NeXus.

The NeXus API also supports using XML as a legacy underlying on-disk format. This uses the Mini-XML library,
developed by Michael Sweet, which is also available as a precompiled binary library for several operating systems.
Check the Mini-XML web pages for more information: http://www.minixml.org/

Packages for MXML are available for both Fedora (mxml, mxml-devel) and Ubuntu/Debian (libmxml1).

287

http://www.gnu.org/licenses/lgpl-3.0.txt
http://download.nexusformat.org/kits/
http://www.nexusformat.org/Download
http://lists.nexusformat.org/mailman/listinfo/nexus
http://www.hdfgroup.org/
http://www.minixml.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

6.1.2 Linux RPM Distribution Kits

An installation kit (source or binary) can be downloaded from: http://download.nexusformat.org/kits/

A NeXus binary RPM (nexus-*.i386.rpm) contains ready compiled NeXus libraries whereas a source RPM (nexus-
*.src.rpm) needs to be compiled into a binary RPM before it can be installed. In general, a binary RPM is installed
using the command

rpm -Uvh file.i386.rpm

or, to change installation location from the default (e.g. /usr/local) area, using

rpm -Uvh --prefix /alternative/directory file.i386.rpm

If the binary RPMS are not the correct architecture for you (e.g. you need x86_64 rather than i386) or the binary RPM
requires libraries (e.g. HDF4) that you do not have, you can instead rebuild a source RPM (.src.rpm) to generate the
correct binary RPM for you machine. Download the source RPM file and then run

rpmbuild --rebuild file.src.rpm

This should generate a binary RPM file which you can install as above. Be careful if you think about specifying an
alternative buildroot for rpmbuild by using --buildroot option as the “buildroot” directory tree will get remove
(so --buildroot / is a really bad idea). Only change buildroot it if the default area turns out not to be big enough
to compile the package.

If you are using Fedora, then you can install all the dependencies by typing

yum install hdf hdf-devel hdf5 hdf5-devel mxml mxml-devel

6.1.3 Microsoft Windows Installation Kit

A Windows MSI based installation kit is available and can be downloaded from:
http://download.nexusformat.org/kits/windows/

6.1.4 Mac OS X Installation Kit

An installation disk image (.dmg) can be downloaded from: http://download.nexusformat.org/kits/macosx/

6.2 Source Installation

6.2.1 NeXus Source Code Distribution

The build uses autoconf (so autools are required) to determine what features will be available by your system. You
must have the development libraries installed for all the file backends you want support for (see above). If you intend
to build more than the C language bindings, you need to have the respective build support in a place where autoconf
will pick them up (i.e. python development files, a Java Development Kit, etc.).

For more information see the README in the toplevel of the source distribution. In case you need help, feel free to
contact the NeXus Mailing List:

Archives http://lists.nexusformat.org/mailman/listinfo/nexus

email nexus@nexusformat.org

288 Chapter 6. Installation

http://download.nexusformat.org/kits/
http://download.nexusformat.org/kits/windows/
http://download.nexusformat.org/kits/macosx/
http://lists.nexusformat.org/mailman/listinfo/nexus
mailto:nexus@nexusformat.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Download the appropriate gzipped tar file, unpack it, and run the standard configure procedure from the resulting
nexus directory. For example, for version 4.2.1;

$ tar zxvf nexus-4.2.1.tar.gz

$ cd nexus-4.2.1

$./configure

To find out how to customize the installation, e.g., to choose different installation directories, type

$./configure --help

Carefully check the final output of the configure run. Make sure all features requested are actually enabled.

$ make

$ make install

See the README file for further instructions.

6.2.2 Cygwin Kits

HDF4 is not supported under CYGWIN - both HDF5 and MXML are supported and can be downloaded and built as
usual. When configuring HDF5 you should explicitly pass a prefix to the configure script to make sure the libraries
are installed in a “usual” location i.e.

./configure --prefix=/usr/local/hdf5

Otherwise you will have to use the --with-hdf5=/path/to/hdf5 option later when configuring NeXus to tell
it where to look for hdf5. After building hdf5, configure and build NeXus using the instructions for source code
distribution above.

6.2. Source Installation 289

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

290 Chapter 6. Installation

CHAPTER

SEVEN

NEXUS UTILITIES

There are many utilities available to read, browse, write, and use NeXus data files. Some are provided by the NeXus
technical group while others are provided by the community. Still, other tools listed here can read or write one of the
low-level file formats used by NeXus (HDF4, HDF5, or XML).

7.1 Utilities supplied with NeXus

Most of these utility programs are run from the command line. It will be noted if a program provides a graphical user
interface (GUI). Short descriptions are provided here with links to further information, as available.

nxbrowse NeXus Browser

nxconvert Utility to convert a NeXus file into HDF4/HDF5/XML/...

nxdir nxdir is a utility for querying a NeXus file about its contents. Full documentation can be found by running
this command:

nxdir -h

nxingest nxingest extracts the metadata from a NeXus file to create an XML file according to a mapping file. The
mapping file defines the structure (names and hierarchy) and content (from either the NeXus file, the mapping
file or the current time) of the output file. See the man page for a description of the mapping file. This tool uses
the NAPI. Thus, any of the supported formats (HDF4, HDF5 and XML) can be read.

nxsummary Use nxsummary to generate summary of a NeXus file. This program relies heavily on a configuration
file. Each item tag in the file describes a node to print from the NeXus file. The path attribute describes
where in the NeXus file to get information from. The label attribute will be printed when showing the value
of the specified field. The optional operation attribute provides for certain operations to be performed on the
data before printing out the result. See the source code documentation for more details.

nxtranslate nxtranslate is an anything to NeXus converter. This is accomplished by using translation files and
a plugin style of architecture where nxtranslate can read from new formats as plugins become available.
The documentation for nxtranslate describes its usage by three types of individuals:

• the person using existing translation files to create NeXus files

• the person creating translation files

• the person writing new retrievers

All of these concepts are discussed in detail in the documentation provided with the source code.

nxvalidate From the source code documentation:

“Utility to convert a NeXus file into HDF4/HDF5/XML/...”

291

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Note: this command-line tool is different than the newer Java GUI program: NXvalidate.

NXplot An extendable utility for plotting any NeXus file. NXplot is an Eclipse-based GUI project in Java to plot
data in NeXus files. (The project was started at the first NeXus Code Camp in 2009.)

7.2 Data Analysis

The list of applications below are some of the utilities that have been developed (or modified) to read/write NeXus
files as a data format. It is not intended to be a complete list of all available packages.

DAVE (http://www.ncnr.nist.gov/dave/) DAVE is an integrated environment for the reduction, visualization and
analysis of inelastic neutron scattering data. It is built using IDL (Interactive Data Language) from ITT Vi-
sual Information Solutions.

DAWN (http://www.dawnsci.org) The Data Analysis WorkbeNch (DAWN) project is an eclipse based workbench
for doing scientific data anaylsis. It offers generic visualisation, and domain specific processing.

GDA (http://www.opengda.org) The GDA project is an open-source framework for creating customised data acqui-
sition software for science facilities such as neutron and X-ray sources. It has elements of the DAWN analysis
workbench built in.

Gumtree (http://docs.codehaus.org/display/GUMTREE) Gumtree is an open source project, providing a graphical
user interface for instrument status and control, data acquisition and data reduction.

IDL (http://www.ittvis.com/) IDL is a high-level technical computing language and interactive environment for al-
gorithm development, data visualization, data analysis, and numeric computation.

IgorPro (http://www.wavemetrics.com/) IGOR Pro is an extraordinarily powerful and extensible scientific graphing,
data analysis, image processing and programming software tool for scientists and engineers.

ISAW (ftp://ftp.sns.gov/ISAW/) The Integrated Spectral Analysis Workbench software project (ISAW) is a Platform-
Independent system Data Reduction/Visualization. ISAW can be used to read, manipulate, view, and save
neutron scattering data. It reads data from IPNS run files or NeXus files and can merge and sort data from
separate measurements.

LAMP (http://www.ill.eu/data_treat/lamp/>) LAMP (Large Array Manipulation Program) is designed for the treat-
ment of data obtained from neutron scattering experiments at the Institut Laue-Langevin. However, LAMP is
now a more general purpose application which can be seen as a GUI-laboratory for data analysis based on the
IDL language.

Mantid (http://www.mantidproject.org/) The Mantid project provides a platform that supports high-performance
computing on neutron and muon data. It is being developed as a collaboration between Rutherford Appleton
Laboratory and Oak Ridge National Laboratory.

MATLAB (http://www.mathworks.com/) MATLAB is a high-level technical computing language and interactive
environment for algorithm development, data visualization, data analysis, and numeric computation.

NeXpy (http://nexpy.github.io/nexpy/) The goal of NeXpy is to provide a simple graphical environment, coupled
with Python scripting capabilities, for the analysis of X-Ray and neutron scattering data. (It was decided at the
NIAC 2010 meeting that a large portion of this code would be adopted in the future by NeXus and be part of the
distribution)

OpenGENIE (http://www.opengenie.org/) A general purpose data analysis and visualisation package primarily de-
veloped at the ISIS Facility, Rutherford Appleton Laboratory.

PyMCA (http://pymca.sourceforge.net/) PyMca is a ready-to-use, and in many aspects state-of-the-art, set of appli-
cations implementing most of the needs of X-ray fluorescence data analysis. It also provides a Python toolkit
for visualization and analysis of energy-dispersive X-ray fluorescence data. Reads, browses, and plots data from
NeXus HDF5 files.

292 Chapter 7. NeXus Utilities

http://www.ncnr.nist.gov/dave/
http://www.dawnsci.org
http://www.opengda.org
http://docs.codehaus.org/display/GUMTREE
http://www.ittvis.com/
http://www.wavemetrics.com/
ftp://ftp.sns.gov/ISAW/
http://www.ill.eu/data_treat/lamp/
http://www.mantidproject.org/
http://www.mathworks.com/
http://nexpy.github.io/nexpy/
http://www.opengenie.org/
http://pymca.sourceforge.net/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

spec2nexus (http://spec2nexus.readthedocs.org/) (Python code) Converts SPEC data files and scans into NeXus
HDF5 files. Provides h5toText utility program to inspect HDF5 file content. Provides libraries:

• spec2nexus.prjPySpec: python binding to read SPEC [#] data files

• spec2nexus.eznx: (Easy NeXus) supports writing NeXus HDF5 files using h5py

7.3 HDF Tools

Here are some of the generic tools that are available to work with HDF files. In addition to the software listed here there
are also APIs for many programming languages that will allow low level programmatic access to the data structures.

HDF Group command line tools (http://www.hdfgroup.org/products/hdf5_tools/#h5dist/) There are various
command line tools that are available from the HDF Group, these are usually shipped with the HDF5 kits but
are also available for download separately.

HDFexplorer (http://www.space-research.org/) A data visualization program that reads Hierarchical Data Format
files (HDF, HDF-EOS and HDF5) and also netCDF data files.

HDFview (http://www.hdfgroup.org) A Java based GUI for browsing (and some basic plotting) of HDF files.

7.3.1 Language APIs

h5py (http://code.google.com/p/h5py/) HDF5 for Python (h5py) is a general-purpose Python interface to
HDF5.

7.3. HDF Tools 293

http://spec2nexus.readthedocs.org/
http://www.hdfgroup.org/products/hdf5_tools/#h5dist/
http://www.space-research.org/
http://www.hdfgroup.org
http://code.google.com/p/h5py/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

294 Chapter 7. NeXus Utilities

CHAPTER

EIGHT

BRIEF HISTORY OF NEXUS

Two things to note about the development and history of NeXus:

• All efforts on NeXus have been voluntary except for one year when we had one full-time worker.

• The NIAC has already discussed many matters related to the format.

June 1994 Mark Könnecke (then ISIS, now PSI) made a proposal using netCDF 1 for the European
neutron scattering community while working at ISIS

August 1994 Jonathan Tischler (ORNL) proposed an HDF-based format 2 as a standard for data storage
at APS

October 1994 Ray Osborn convened a series of three workshops called SoftNeSS. 3 In the first meet-
ing, Mark Könnecke and Jon Tischler were invited to meet with representatives from all the major
U.S. neutron scattering laboratories at Argonne National Laboratory to discuss future software de-
velopment for the analysis and visualization of neutron data. One of the main recommendations of
SoftNeSS‘94 was that a common data format should be developed.

September 1995 At SoftNeSS 1995 (at NIST), three individual data format proposals by Przemek
Klosowski (NIST), Mark Könnecke (then ISIS), and Jonathan Tischler (ORNL and APS/ANL) were
joined to form the basis of the current NeXus format. At this workshop, the name NeXus was chosen.

August 1996 The HDF-4 API is quite complex. Thus a NeXus Abstract Programmer Interface NAPI was
released which simplified reading and writing NeXus files.

October 1996 At SoftNeSS 1996 (at ANL), after reviewing the different scientific data formats discussed,
it was decided to use HDF4 as it provided the best grouping support. The basic structure of a NeXus
file was agreed upon. the various data format proposals were combined into a single document by
Przemek Klosowski (NIST), Mark Könnecke (then ISIS), Jonathan Tischler (ORNL and APS/ANL),
and Ray Osborn (IPNS/ANL) coauthored the first proposal for the NeXus scientific data standard. 4

July 1997 SINQ at PSI started writing NeXus files to store raw data.

Summer 2001 MLNSC at LANL started writing NeXus files to store raw data

September 2002 NeXus API version 2.0.0 is released. This version brought support for the new version
of HDF, HDF5, released by the HDF group. HDF4 imposed limits on file sizes and the number of
objects in a file. These issues were resolved with HDF5. The NeXus API abstracted the difference
between the two physical file formats away form the user.

June 2003 Przemek Klosowski, Ray Osborn, and Richard Riedel received the only known grant explic-
itly for working on NeXus from the Systems Integration for Manufacturing Applications (SIMA)

1 http://wiki.nexusformat.org/images/b/b8/European-Formats.pdf
2 http://www.neutron.anl.gov/softness
3 http://wiki.nexusformat.org/images/d/d5/Proposed_Data_Standard_for_the_APS.pdf
4 http://wiki.nexusformat.org/images/9/9a/NeXus_Proposal.pdf

295

http://wiki.nexusformat.org/images/b/b8/European-Formats.pdf
http://www.neutron.anl.gov/softness
http://wiki.nexusformat.org/images/d/d5/Proposed_Data_Standard_for_the_APS.pdf
http://wiki.nexusformat.org/images/9/9a/NeXus_Proposal.pdf

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

program of the National Institute of Standards and Technology (NIST). The grant funded a person
for one year to work on community wide infrastructure in NeXus.

October 2003 In 2003, NeXus had arrived at a stage where informal gatherings of a group of people
were no longer good enough to oversee the development of NeXus. This lead to the formation of
the NeXus International Advisory Committee (NIAC) which strives to include representatives of all
major stake holders in NeXus. A first meeting was held at CalTech. Since 2003, the NIAC meets
every year to discuss all matters NeXus.

July 2005 The community asked the NeXus team to provide an ASCII based physical file format which
allows them to edit their scientific results in emacs. This lead to the development of a XML NeXus
physical format. This was released with NeXus API version 3.0.0.

May 2007 NeXus API version 4.0.0 is released with broader support for scripting languages and the
feature to link with external files.

October 2007 NeXus API version 4.1.0 is released with many bug-fixes.

October 2008 NXDL: The NeXus Definition Language is defined. Until now, NeXus used another XML
format, meta-DTD, for defining base classes and application definitions. There were several prob-
lems with meta-DTD, the biggest one being that it was not easy to validate against it. NXDL was
designed to circumvent these problems. All current base classes and application definitions were
ported into the NXDL.

April 2009 NeXus API version 4.2.0 is released with additional C++, IDL, and python/numpy interfaces.

September 2009 NXDL and draft NXsas presented to canSAS at SAS2009 conference

January 2010 NXDL presented to ESRF HDF5 workshop on hyperspectral data

May 2012 first release (3.1.0) of NXDL (NeXus Definition Language)

296 Chapter 8. Brief history of NeXus

CHAPTER

NINE

ABOUT THESE DOCS

9.1 Authors

Pete R. Jemian, Documentation Editor: <jemian@anl.gov>, Advanced Photon Source, Argonne National
Laboratory, Argonne, IL, USA,

Frederick Akeroyd: <freddie.akeroyd@stfc.ac.uk>, Rutherford Appleton Laboratory, Didcot, UK,

Stuart I. Campbell: <campbellsi@ornl.gov>, Oak Ridge National Laboratory, Oak Ridge, TN, USA,

Przemek Klosowski: <przemek.klosowski@nist.gov>, U. of Maryland and NIST, Gaithersburg, MD, USA,

Mark Könnecke: <Mark.Koennecke@psi.ch>, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland,

Ray Osborn: <rosborn@anl.gov>, Argonne National Laboratory, Argonne, IL, USA,

Peter F. Peterson: <petersonpf@ornl.gov>, Spallation Neutron Source, Oak Ridge, TN, USA,

Tobias Richter: <Tobias.Richter@diamond.ac.uk>, Diamond Light Source Ltd., Didcot, UK,

Joachim Wuttke: <j.wuttke@fz-juelich.de>, Forschungszentrum Jülich, Jülich Centre for Neutron Science
at Heinz Maier-Leibnitz Zentrum Garching, Germany.

9.2 Colophon

These docs (manual and reference) were produced using Sphinx (http://sphinx.pocoo.org). The source for the manual
shows many examples of the structures used to create the manual. If you have any questions about how to contribute
to this manual, please contact the NeXus Documentation Editor (Pete Jemian <jemian@anl.gov>).

Note: The indentation is very important to the syntax of the restructured text manual source. Be careful not to mix
tabs and spaces in the indentation or the manual may not build properly.

9.3 Revision History

Browse the most recent Issues on the GitHub repository: https://github.com/nexusformat/definitions/pulse/weekly

297

http://sphinx.pocoo.org
mailto:jemian@anl.gov
https://github.com/nexusformat/definitions/pulse/weekly

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

9.4 Copyright and Licenses

Published by NeXus International Advisory Committee, http://www.nexusformat.org

Copyright (c) 1996-2014, NeXus International Advisory Committee

The NeXus manual is licensed under the terms of the GNU Free Documentation License version 1.3.

download FDL

GNU http://www.gnu.org/licenses/fdl-1.3.txt

The code examples in the NeXus manual are licensed under the terms of the GNU Lesser General Public License
version 3.

download LGPL

GNU http://www.gnu.org/licenses/lgpl-3.0.txt

Publishing Information

This manual built 2014-10-05 17:22:12 CDT.

See Also:

This document is available in different formats:

online HTML http://download.nexusformat.org/doc/html/index.html

PDF nexus.pdf (available via online HTML link above)

A very brief overview is also available (separate from the manual).

HTML http://htmlpreview.github.io/?https://github.com/nexusformat/communications/blob/master/impatient/_build/html/index.html

298 Chapter 9. About these docs

http://www.nexusformat.org
http://www.gnu.org/licenses/fdl-1.3.txt
http://www.gnu.org/licenses/lgpl-3.0.txt
http://download.nexusformat.org/doc/html/index.html
http://htmlpreview.github.io/?https://github.com/nexusformat/communications/blob/master/impatient/_build/html/index.html

INDEX

A
absorbing_material (data field), 134, 156
absorption_cross_section (data field), 128
acceleration_time (data field), 173
accepted_photon_beam_divergence (data field), 131
accepting_aperture (data field), 132
acquisition_mode (data field), 144, 233
address (data field), 189
aequatorial_angle (data field), 205–208
affiliation (data field), 189
alpha (data field), 229
angles (data field), 234
angular_calibration (data field), 144, 255
angular_calibration_applied (data field), 144, 255
anonymous__NEEDS_XSD_CHANGE__ (data field),

271
aperture (base class), see NXaperture, 127
aperture (data field), 191
API, see NAPI
application definition, 192
archive (application definition), see NXarchive, 192
arpes (contributed definition), see NXarpes, 232
attached_to (data field), 179
attenuator (base class), see NXattenuator, 128
attenuator_transmission (data field), 128, 232, 254
attribute, 4, 39, 107

data field, 14, 17
depends_on, 24
dim, 51
file-level (NXroot), 18, 42
index, 51
internal, 43
name, 50
NAPIlink, 43
napimount, 43
NXclass, 32
offset, 24
order, 24
target, 43
transformation_type, 24
units, 4

value, 24, 51
vector, 24
XML, 42

author (data field), 169, 261, 266
authors, 297
automatic plotting, see plotting
average_value (data field), 164, 261, 265, 266
average_value_error (data field), 164, 261, 265, 266
axes (attribute), 18, 37, 139–141, 161, 168, 250
axis, 18, 37
axis (attribute), 139, 141, 142
azimuthal (data field), 210
azimuthal_angle (data field), 138, 142, 199, 205, 207,

214, 216, 217, 262, 267
azimuthal_width (data field), 210

B
bandwidth (data field), 162
base class, 127
beam (base class), see NXbeam, 129
beam stop (base class), see NXbeam_stop, 130
beam_center_x (data field), 144, 205, 207, 232, 255
beam_center_y (data field), 144, 205, 208, 232, 255
beam_shape (data field), 245
beamline (contributed definition), see NXbeamline, 234
beamline (data field), 133, 235, 262, 266
beamline_distance (data field), 251, 253, 259, 269, 270
bend_angle_x (data field), 160, 165
bend_angle_y (data field), 160, 165
bending magnet (base class), see NXbending_magnet,

131
bending_radius (data field), 131
bibtex (data field), 251
binary data, 36, see NX_BINARY
binary executable, see NAPI installation
binary format, see file format
bit_depth_readout (data field), 145, 256
blade_spacing (data field), 134
blade_thickness (data field), 134
bragg_angle (data field), 138
browser, 15, 291
bunch_distance (data field), 185

299

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

bunch_length (data field), 185

C
calibration_date (data field), 143
canSAS, 235
canSAS (contributed definition), see NXcanSAS, 235
canSAS_class (attribute), 235, 237, 239, 241, 243, 244,

246, 249
capillary (base class), see NXcapillary, 132
central_stop_diameter (data field), 252
central_stop_material (data field), 253
central_stop_thickness (data field), 253
changer_position (data field), 176, 264, 269
characterization (base class), see NXcharacterization, 132
check_sum (attribute), 142
chemical_formula (data field), 135, 157, 175, 194
chi (data field), 228
CIF, 25
cite (contributed definition), see NXcite, 250
class definitions, see base class, see application definition,

see contributed definition
coating_material (data field), 158, 161, 165
coating_roughness (data field), 158, 161, 165
collection (base class), see NXcollection, 133
collection_description (data field), 151, 186, 192
collection_identifier (data field), 151, 186, 192, 260, 265
collection_time (data field), 152, 187, 192
collection_title (data field), 260, 265
collimator (base class), see NXcollimator, 133
command1 (data field), 261, 266
comment (attribute), 153, 187
community, 283
comp_current (data field), 159
comp_turns (data field), 158
component (data field), 177
component_index (data field), 159
composition (data field), 172
concentration (data field), 177
configuration (attribute), 152, 187
constitution, 60, 283
contribute, 60
contributed definition, 232, 283
controller_record (data field), 173
conversion, 291
coordinate systems, 21

CIF, 22
IUCr, 21
McStas, 21, 22
NeXus, 21
NeXus polar coordinate, 21
spherical polar, 23
transformations, 23

copyright, 298
count_time (data field), 144, 168, 255

countrate_correction__applied (data field), 145, 256
coupled (data field), 166
coupling_material (data field), 167, 263, 268
crate (data field), 143
creator (attribute), 174
critical_energy (data field), 131
crystal (base class), see NXcrystal, 134
current (data field), 184
curvature (data field), 191
curvature_horizontal (data field), 137
curvature_vertical (data field), 137
cut_angle (data field), 136
Cygwin, see NAPI installation
cylindrical (data field), 191
cylindrical_orientation_angle (data field), 137

D
d_spacing (data field), 137
data

multi-dimensional, 36
data (base class), see NXdata, 138
data (data field), 140, 141, 161, 168, 170, 196, 198–

200, 202–205, 207–211, 213–219, 221, 223–
226, 230, 233, 254, 264, 267, 269

data analysis software, 292
data attribute, see attribute
data objects

attributes, 17
data items, 17
fields, 4, 16, 17
groups, 4, 17

data objects, fields, see HDF
Scientific Data Sets, 4

data_error (data field), 142
data_origin (data field), 148, 257
data_size (data field), 148, 257
data_x_time_of_flight (data field), 267
data_x_y (data field), 262, 267
data_y_time_of_flight (data field), 267
date (data field), 169, 173, 222, 225, 249, 262, 266
date and time, 18, 35, 36
DAVE (data analysis software), 292
DAWN (data analysis software), 292
dead_time (data field), 143, 255
default plot, see plotting
definition (data field), 133, 152, 186, 193, 195–198, 200,

201, 203, 204, 206, 209–212, 214, 215, 217,
218, 220, 222, 223, 225, 226, 228–233, 236,
254, 260, 265

definition_local (data field), 152, 187
density (data field), 137, 157, 176
depends_on (attribute), 24, 148–150, 257, 258, 271
depends_on (data field), 171, 182, 254, 258
description (attribute), 251, 253

300 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

description (data field), 128, 130, 143, 154, 156, 159, 160,
164, 165, 170, 173, 177, 193, 194, 249, 251,
253, 254, 259, 261–270

design principles, 4
details (data field), 246
detection_gas_path (data field), 143
detector (base class), see NXdetector, 140
detector group (base class), see NXdetector_group, 147
detector module (base class), see NXdetector_module,

147
detector_number (data field), 141, 214, 216
detector_readout_time (data field), 145, 256
diameter (data field), 144, 171, 230
dictionary of terms, 12
dimension, 18, 36, 42

attribute (dim), 51
data set, 38, 51, 60
dimension scales, 36–38
fastest varying, 37
storage order, 33

dimension scale, 18, 20, 39
direction

vector (attribute), 24
direction (attribute), 176
direction (data field), 182
directtof (application definition), see NXdirecttof, 194
disk chopper (base class), see NXdisk_chopper, 150
distance (data field), 128, 129, 142, 151, 156, 166, 167,

178, 183, 197, 199, 203, 205, 207, 210, 214–
219, 221, 226, 227, 241, 254, 262–264, 267–
269

distance_to_detector (data field), 130
distances (data field), 188
distribution (attribute), 139
divergence_x (data field), 134
divergence_x_minus (data field), 131
divergence_x_plus (data field), 131
divergence_y (data field), 134
divergence_y_minus (data field), 131
divergence_y_plus (data field), 131
documentation editor, 297
doi (data field), 251
download location, see NAPI installation
duration (data field), 152, 164, 187, 192, 215, 217, 260,

261, 265, 266

E
ef (data field), 213
efficiency (data field), 146, 168, 172
ei (data field), 212
electric_field (data field), 176, 194
electrostatic kicker (contributed definition), see NXelec-

trostatic_kicker, 251
email (data field), 189

emittance_x (data field), 184
emittance_y (data field), 184
en (data field), 212, 213
end_time (data field), 152, 167, 187, 192, 201, 203, 204,

209, 218, 220, 254, 260, 265
endnote (data field), 251
energies (data field), 234
energy (data field), 156, 162, 169, 184, 195–197, 210,

224, 225, 233
energy_error (data field), 169
energy_transfer (data field), 129
entrance_slit_setting (data field), 233
entrance_slit_shape (data field), 233
entrance_slit_size (data field), 234
entry (attribute), 197, 204, 206, 211, 223, 225, 233
entry (base class), see NXentry, 151
entry_identifier (data field), 151, 186, 192, 260, 265
enumeration, 36
environment (base class), see NXenvironment, 153
error (data field), 210
errors (data field), 140
eulerian cradle, 24, 228
even_layer_density (data field), 165
even_layer_material (data field), 165
event data (base class), see NXevent_data, 154
event_index (data field), 262
event_pixel_id (data field), 262
event_time_of_flight (data field), 262
events_per_pulse (data field), 155
examples

NeXus file, 4
minimal, 6

exchange format, 12
experiment_description (data field), 151, 186, 192
experiment_identifier (data field), 151, 186, 192, 260, 265
external_DAC (data field), 178
external_field_brief (data field), 180
external_material (data field), 160, 165

F
fabrication (data field), 252
facility_user_id (data field), 189, 193, 264, 269
FAQ, 59
fast_pixel_direction (data field), 148, 257
fast_pixel_size (data field), 149, 258
fax_number (data field), 189
FDL, 298
fermi chopper (base class), see NXfermi_chopper, 155
file

attributes, 18, 42
read and write, 13
validate, 291

file format, 39
HDF, 39, 287

Index 301

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

XML, 42, 287
file_name (attribute), 174
file_name (data field), 170
file_time (attribute), 174
file_update_time (attribute), 174
filenames (data field), 198, 211
filter (base class), see NXfilter, 156
final_beam_divergence (data field), 130
final_energy (data field), 129
final_polarization (data field), 130
final_wavelength (data field), 129
final_wavelength_spread (data field), 130
first_good (attribute), 139
fixed_energy (data field), 210
flatfield (data field), 144, 255
flatfield_applied (data field), 144, 255
flatfield_error (data field), 144, 255
flip_current (data field), 159
flip_turns (data field), 158
flipper (base class), see NXflipper, 158
floating-point numbers, 35
fluo (application definition), see NXfluo, 195
flux (data field), 130, 184, 258
focal_size (data field), 132
focus_parameters (data field), 252
focus_type (data field), 191
format unification, 11
four-circle diffractometer, 24, 29, 228
frame_start_number (data field), 144, 226
frame_time (data field), 145, 256
frequency (attribute), 141
frequency (data field), 134, 184, 262, 267
fresnel zone plate (contributed definition), see NXfres-

nel_zone_plate, 252

G
gain_setting (data field), 145, 256
gap (data field), 162
gas (data field), 191
gas_pressure (data field), 143, 191
GDA (data acquisition software), 292
geometry, 21–23
geometry (base class), see NXgeometry, 159
git, 284
group_index (data field), 147
group_names (data field), 147
group_parent (data field), 147
group_type (data field), 147
guide (base class), see NXguide, 159
guide_current (data field), 159
guide_turns (data field), 158
Gumtree (data analysis software), 292

H
h5py, 74
harmonic (data field), 162
HDF, 56, 287

file format, 39
Scientific Data Sets, 4
tools, 293

HDF4, 295
HDF5, 295

examples, 69
HDF5_Version (attribute), 174
HDF_version (attribute), 174
HDFexplorer, 293
HDFview, 293
height (data field), 155, 190
hierarchy, 4, 16, 17, 26, 28, 47, 48, 54, 291
high_trip_value (data field), 180
holder (data field), 264, 269

I
I (data field), 238
I_axes (attribute), 237
ID (data field), 246
identifier (data field), 264, 269
IDF_Version (attribute), 151, 186
IDL (data analysis software), 292
IGOR Pro (data analysis software), 292
image_key (data field), 219
images, 36
incident_angle (data field), 160, 165
incident_beam_divergence (data field), 129
incident_energy (data field), 129
incident_polarisation_stokes (data field), 258
incident_polarization (data field), 130
incident_wavelength (data field), 129, 258
incident_wavelength_spread (data field), 129
index (attribute), 51, 192
indirecttof (application definition), see NXindirecttof, 196
ingestion, 291
input (data field), 143
insertion device (base class), see NXinsertion_device, 161
inspection, 291
installation, see NAPI installation
instrument (base class), see NXinstrument, 162
instrument definitions, 7
integers, 35
integral (data field), 168, 201, 203, 206, 221, 227
integral_counts (data field), 216
interior_atmosphere (data field), 160, 165
introduction, 3
iqproc (application definition), see NXiqproc, 197
is_cylindrical (data field), 137
ISAW (data analysis software), 292
ISO 8601, see date and time

302 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

ISO8601 (data type), 126
issue reporting, 285

K
k (data field), 162
Könnecke, Mark, 11, 295
kappa (data field), 229
ki_over_kf_scaling (data field), 210
Klosowski, Przemysław, 11, 295

L
lambda (data field), 250
LAMP (data analysis software), 292
last_fill (data field), 185
last_good (attribute), 139
lauetof (application definition), see NXlauetof, 198
layer_thickness (data field), 166
layout (data field), 143
length (data field), 162, 190, 239
lens_geometry (data field), 191
lens_length (data field), 191
lens_material (data field), 191
lens_mode (data field), 233
lens_thickness (data field), 191
lexicography, 12
LGPL, 298
license, 298
link, 4, 36, 42, 59, 61, see target, 113, 139

external file, 19
target, 19, 43

link (attribute), 141, 142
local_name (attribute), 143
local_name (data field), 143
location (attribute), 133
log (base class), see NXlog, 164
long_name (attribute), 139–142
low-level file format, see file format
low_trip_value (data field), 180

M
m_value (data field), 157, 160, 165
Mac OS X, see NAPI installation
magnetic kicker (contributed definition), see NXmag-

netic_kicker, 253
magnetic_field (data field), 131, 176, 194
magnetic_wavelength (data field), 162
mailing lists, 284
Mantid (data analysis software), 292
manual source, 297
manufacturer (data field), 132
Mask_indices (attribute), 237
mask_material (data field), 253
mask_thickness (data field), 253
mass (data field), 176

material (data field), 128
MATLAB, 292
maximum_incident_angle (data field), 132
maximum_value (data field), 164, 261, 265, 266
McStas, 22, 23
measurement (data field), 179
metadata, 20, 47, 48, 54, 55, 108
Microsoft Windows, see NAPI installation
mime_type (attribute), 133, 153, 188
minimum_value (data field), 164, 261, 265, 266
mirror (base class), see NXmirror, 165
mode (data field), 167, 185, 196, 199, 201–203, 206, 208,

213, 215, 216, 218, 224, 227, 264, 269
model (data field), 179
moderator (base class), see NXmoderator, 166
module_offset (data field), 148, 257
monitor, 38
monitor (base class), see NXmonitor, 167
monochromator (base class), see NXmonochromator, 168
monopd (application definition), see NXmonopd, 200
mosaic_horizontal (data field), 137
mosaic_vertical (data field), 137
motivation, 3, see dictionary of terms, see exchange for-

mat, see format unification, see plotting, 10, 20
multi-dimensional data, 36
mx (contributed definition), see NXmx, 254

N
name (attribute), 50, 236, 241, 249
name (data field), 154, 163, 172, 175, 179, 183, 189, 193–

197, 199, 200, 202–208, 210–217, 219, 221,
222, 224–226, 233, 234, 241, 249, 258, 262,
264, 266, 267, 269

name rules, 32
naming convention, 32
NAPI, 4, 12, 13, 13, 60, 271, 291, 295

bypassing, 39
c, 274
c++, 274
core, 273
examples, 63
f77, 274
f90, 274
IDL, 280
installation, 285

Cygwin, 289
download location, 287
Mac OS X, 288
RPM, 288
source distribution, 288
Windows, 288

java, 275
python, 280

NAPIlink, 42

Index 303

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

attribute, 43
napimount

attribute, 43
nature (data field), 216, 218, 264, 269
Nelson, Mitchell, 11
NeXpy, 7, 88
NeXpy (data analysis software), 292
NeXus Application Programming Interface, see NAPI
NeXus Definition Language, see NXDL
NeXus International Advisory Committee, see NIAC
NeXus wiki, 283
NeXus_version (attribute), 174
NIAC, 60, 283, 283, 296
note (base class), see NXnote, 169
notes (data field), 260, 265
num (data field), 190
number (data field), 155
number_of_bunches (data field), 185
number_of_cycles (data field), 146
number_of_lenses (data field), 191
number_sections (data field), 161
numbers, see floating-point numbers, see integers
NX

used as NX class prefix, 19, 32
NX_ANGLE (units type), 126
NX_ANY (units type), 126
NX_AREA (units type), 126
NX_BINARY (data type), 126
NX_BOOLEAN (data type), 126
NX_CHAR (data type), 126
NX_CHARGE (units type), 126
NX_class (attribute), 174
NX_CROSS_SECTION (units type), 126
NX_CURRENT (units type), 126
NX_DATE_TIME (data type), 126
NX_DIMENSIONLESS (units type), 126
NX_EMITTANCE (units type), 126
NX_ENERGY (units type), 126
NX_FLOAT (data type), 126
NX_FLUX (units type), 127
NX_FREQUENCY (units type), 127
NX_INT (data type), 126
NX_LENGTH (units type), 127
NX_MASS (units type), 127
NX_MASS_DENSITY (units type), 127
NX_MOLECULAR_WEIGHT (units type), 127
NX_NUMBER (data type), 126
NX_PER_AREA (units type), 127
NX_PER_LENGTH (units type), 127
NX_PERIOD (units type), 127
NX_POSINT (data type), 126
NX_POWER (units type), 127
NX_PRESSURE (units type), 127
NX_PULSES (units type), 127

NX_SCATTERING_LENGTH_DENSITY (units type),
127

NX_SOLID_ANGLE (units type), 127
NX_TEMPERATURE (units type), 127
NX_TIME (units type), 127
NX_TIME_OF_FLIGHT (units type), 127
NX_UINT (data type), 126
NX_UNITLESS (units type), 127
NX_VOLTAGE (units type), 127
NX_VOLUME (units type), 127
NX_WAVELENGTH (units type), 127
NX_WAVENUMBER (units type), 127
NXaperture (base class), 127

used in base class, 163
used in contributed definition, 234, 260, 265

NXarchive (application definition), 192
NXarpes (contributed definition), 232
NXattenuator (base class), 128

used in application definition, 232
used in base class, 163
used in contributed definition, 254, 260, 265

NXbeam (base class), 129
used in base class, 163, 175
used in contributed definition, 254

NXbeam_stop (base class), 130
used in base class, 163

NXbeamline (contributed definition), 234
NXbending_magnet (base class), 131

used in base class, 163
used in contributed definition, 234

nxbrowse, 15
nxbrowse (utility), 291
NXcanSAS (contributed definition), 235

I, 238
Q, 237
SAScollimation, 239
SASdata, 237
SASdetector, 241
SASentry, 235
SASinstrument, 239
SASnote, 249
SASprocess, 249
SASprocessnote, 249
SASsample, 246
SASsource, 244
SAStransmission_spectrum, 249
SASuncertainties, 239

NXcapillary (base class), 132
used in base class, 163

NXcharacterization (base class), 132
used in base class, 141, 151, 186

NXcite (contributed definition), 250
NXclass (attribute), 32
NXcollection (base class), 133

304 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

used in application definition, 209
used in base class, 141, 151, 163, 186
used in contributed definition, 234, 235, 254, 260,

265
NXcollimator (base class), 133

used in application definition, 204, 206
used in base class, 163
used in contributed definition, 235

nxconvert (utility), 291
NXcrystal (base class), 134

used in application definition, 200, 212
used in base class, 163, 169
used in contributed definition, 260, 265

NXdata, 37
NXdata (base class), 5, 138

plotting, 4
used in application definition, 195, 197, 198, 200,

201, 203, 204, 206, 209, 211, 212, 214, 215,
217, 218, 220, 222, 223, 225, 226, 228, 229,
231, 232

used in base class, 129, 131, 132, 135, 141, 151, 156,
160, 162, 165, 166, 169, 175, 183, 186

used in contributed definition, 233, 235, 254, 260,
265

NXdetector (base class), 140
plotting, 4
used in application definition, 195, 198, 200, 201,

203, 204, 206, 209, 212, 214, 215, 217, 218,
220, 223, 226, 228–232

used in base class, 163
used in contributed definition, 233, 235, 254, 260,

265
NXdetector_group (base class), 147

used in base class, 163
NXdetector_module (base class), 147

used in base class, 141
used in contributed definition, 254

nxdir (utility), 291
NXdirecttof (application definition), 194
NXdisk_chopper (base class), 150

used in application definition, 203
used in base class, 163
used in contributed definition, 260, 265

NXDL, 19, 58, 60, 105, 107, 107
NXDL data type, 126
NXDL element, 108

attribute, 108
definition, 108
dimensions, 108
doc, 109
enumeration, 109
field, 109
group, 109
link, 113

symbols, 113
NXDL units type, 126
NXelectrostatic_kicker (base class)

used in contributed definition, 234
NXelectrostatic_kicker (contributed definition), 251
NXentry (base class), 5, 151

used in application definition, 192, 194–198, 200,
201, 203, 204, 206, 209, 211, 212, 214, 215,
217, 218, 220, 222, 223, 225, 226, 228–232

used in base class, 174
used in contributed definition, 233, 254, 260, 265

NXenvironment (base class), 153
used in base class, 175

NXevent_data (base class), 154
used in base class, 163
used in contributed definition, 260

NXfermi_chopper (base class), 155
used in application definition, 194, 209
used in base class, 163
used in contributed definition, 265

NXfilter (base class), 156
used in base class, 163

NXflipper (base class), 158
used in base class, 163

NXfluo (application definition), 195
NXfresnel_zone_plate (contributed definition), 252
NXgeometry (base class), 159

used in application definition, 204, 206
used in base class, 128, 130, 131, 134, 135, 141, 150,

154–156, 160, 162, 165–167, 169, 170, 175,
179, 183, 188, 190

used in contributed definition, 252, 260, 265
NXguide (base class), 159

used in base class, 163
NXindirecttof (application definition), 196
nxingest (utility), 291
NXinsertion_device (base class), 161

used in base class, 163
NXinstrument (base class), 5, 162

used in application definition, 192, 194–198, 200,
201, 203, 204, 206, 209, 211, 212, 214, 215,
217, 218, 220, 222, 223, 226, 228–232

used in base class, 151, 186
used in contributed definition, 233, 235, 254, 260,

265
NXiqproc (application definition), 197
NXlauetof (application definition), 198
NXlog (base class), 164

used in base class, 134, 135, 156, 166, 167, 175, 179
used in contributed definition, 251, 253, 259, 260,

265, 269, 270
NXmagnetic_kicker (base class)

used in contributed definition, 234
NXmagnetic_kicker (contributed definition), 253

Index 305

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXmirror (base class), 165
used in base class, 163

NXmoderator (base class), 166
used in base class, 163
used in contributed definition, 260, 265

NXmonitor (base class), 167
plotting, 4
used in application definition, 195, 198, 200, 201,

203, 204, 206, 209, 212, 214, 215, 217, 218,
220, 223, 226

used in base class, 151, 186
used in contributed definition, 260, 265

NXmonochromator (base class), 168
used in application definition, 195, 196, 201, 204,

223, 226
used in base class, 163
used in contributed definition, 233

NXmonopd (application definition), 200
NXmx (contributed definition), 254
NXnote (base class), 169

used in base class, 128, 141, 151, 154, 173, 183, 186,
191

used in contributed definition, 260, 265
NXobject (base class), 170
NXorientation (base class), 170

used in base class, 159, 179
used in contributed definition, 235, 260, 265

NXparameters (base class), 171
used in application definition, 197, 211, 222, 225
used in base class, 151, 186
used in contributed definition, 235

NXpinhole (base class), 171
NXplot (utility), 292
NXpolarizer (base class), 172

used in base class, 163
used in contributed definition, 260, 265

NXpositioner (base class), 172
used in base class, 163, 175
used in contributed definition, 260, 265

NXprocess, 54
NXprocess (base class), 173

used in application definition, 197, 211, 222, 225
used in base class, 151, 186
used in contributed definition, 235

NXquadrupole_magnet (base class)
used in contributed definition, 234

NXquadrupole_magnet (contributed definition), 258
NXrefscan (application definition), 201
NXreftof (application definition), 202
NXroot (base class), 174

attributes, 18, 42
NXsample (base class), 5, 175

used in application definition, 192, 195, 197, 198,
200, 201, 203, 204, 206, 209, 211, 212, 214,

215, 217, 218, 220, 222, 223, 225, 226, 228,
229, 231, 232

used in base class, 151, 186
used in contributed definition, 233, 235, 254, 260,

265
NXsas (application definition), 204
NXsas (base class), 296
NXsastof (application definition), 206
NXscan (application definition), 208
NXsensor (base class), 179

used in base class, 154, 156
NXseparator (base class)

used in contributed definition, 234
NXseparator (contributed definition), 259
NXshape (base class), 181

used in application definition, 204, 206
used in base class, 135, 159, 165
used in contributed definition, 260, 265

NXslit (base class), 182
NXsnsevent (contributed definition), 260
NXsnshisto (contributed definition), 264
NXsolenoid_magnet (base class)

used in contributed definition, 234
NXsolenoid_magnet (contributed definition), 269
NXsource (base class), 182

used in application definition, 192, 195, 197, 200,
201, 204, 206, 211, 212, 218, 220, 222, 223,
226, 229

used in base class, 163
used in contributed definition, 233, 235, 260, 265

NXspe (application definition), 209
NXspin_rotator (base class)

used in contributed definition, 234
NXspin_rotator (contributed definition), 270
NXsqom (application definition), 210
NXsubentry (base class), 185

used in base class, 151
used in contributed definition, 235

nxsummary, 291
NXtas (application definition), 212
NXtofnpd (application definition), 214
NXtofraw (application definition), 215
NXtofsingle (application definition), 217
NXtomo (application definition), 218
NXtomophase (application definition), 220
NXtomoproc (application definition), 221
NXtransformations (base class)

used in contributed definition, 254
NXtransformations (contributed definition), 270
nxtranslate (utility), 291
NXtranslation (base class), 188

used in base class, 159
used in contributed definition, 235, 260, 265

NXuser (base class), 188

306 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

used in application definition, 192, 214, 215, 217
used in base class, 151, 186
used in contributed definition, 260, 265

nxvalidate (utility), 291
NXvelocity_selector (base class), 189

used in base class, 163, 169
NXxas (application definition), 223
NXxasproc (application definition), 224
NXxbase (application definition), 225
NXxeuler (application definition), 227
NXxkappa (application definition), 228
NXxlaue (application definition), 229
NXxlaueplate (application definition), 230
NXxnb (application definition), 230
NXxraylens (base class), 190

used in base class, 163
NXxrot (application definition), 231

O
object (base class), see NXobject, 170
odd_layer_density (data field), 165
odd_layer_material (data field), 165
offset (attribute), 24, 148–150, 155, 223, 257, 258, 271
offset (data field), 140
offset_units (attribute), 148–150, 271
OpenGENIE (data analysis software), 292
order (attribute), 24
order_no (data field), 136
orientation (base class), see NXorientation, 170
orientation_matrix (data field), 136, 157, 176, 199, 213,

227
Osborn, Raymond, 295
outer_diameter (data field), 252
outermost_zone_width (data field), 252

P
pair_separation (data field), 150
parameters (base class), see NXparameters, 171
pass_energy (data field), 234
path_length (data field), 178
path_length_window (data field), 178
period (data field), 184
phase (data field), 150, 162
phi (data field), 228, 229
physical file format, see file format
pinhole (base class), see NXpinhole, 171
pitch (data field), 243
pixel_id (data field), 262, 267
pixel_mask (data field), 144, 255
pixel_mask_applied (data field), 144, 255
pixel_number (data field), 154
plotting, 4, 5, 11, 14, 17, 18, 20, 20, 28, 37, 60, 138, 140,

161, 292
how to find data, 38

poison_depth (data field), 166
poison_material (data field), 167
polar (data field), 210
polar_angle (data field), 138, 142, 197, 199, 200, 202,

203, 205, 207, 213, 214, 216, 217, 228, 229,
231, 232, 262, 267

polar_width (data field), 210
polarizer (base class), see NXpolarizer, 172
poles (data field), 162
positioner (base class), see NXpositioner, 172
power (data field), 162, 184
pre_sample_flightpath (data field), 153, 187, 214, 215,

217
precompiled executable, see NAPI installation
preparation_date (data field), 177, 194
preset (data field), 167, 196, 199, 201–203, 206, 208, 213,

215, 216, 218, 224, 227
pressure (data field), 176, 194
primary (attribute), 141, 142
probe (data field), 183, 193, 195, 197, 200, 202, 205, 207,

211, 212, 219, 221, 222, 224, 226, 233, 262,
267

process (base class), see NXprocess, 173
Processed Data, 54
program (data field), 154, 173, 193, 198, 211, 222, 225
program_name (data field), 152, 187, 210
programs, 291
proton_charge (data field), 260, 265
psi (data field), 210
pulse_height (data field), 155
pulse_time (data field), 154, 262
pulse_width (data field), 185
PyMCA (data analysis software), 292

Q
Q (data field), 237
Q_indices (attribute), 237
qh (data field), 213
qk (data field), 213
ql (data field), 213
Qmean (data field), 239
quadrupole magnet (contributed definition), see

NXquadrupole_magnet, 258
qx (data field), 198, 211
qy (data field), 198, 212
qz (data field), 212

R
r_slit (data field), 155
radiation (data field), 244
radius (data field), 150, 155, 190
range (data field), 168
rank, 14, 18, 38, 51
ratio (data field), 151

Index 307

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

raw_file (data field), 222, 225
raw_frames (data field), 261, 265
raw_time_of_flight (data field), 141
raw_value (data field), 164, 173
read file, 14
real_time (data field), 146
reflection (data field), 137, 172
refscan (application definition), see NXrefscan, 201
reftof (application definition), see NXreftof, 202
region_origin (data field), 234
region_size (data field), 234
regular expression, 32
relative_molecular_mass (data field), 176
release_date (data field), 193
repository, 284
revision (data field), 152, 187, 193
revision history, 297
Riedel, Richard, 295
role (data field), 189, 193, 264, 269
roll (data field), 243
root (base class), see NXroot, 174
rotation, 24
rotation_angle (data field), 178, 201–203, 205, 207, 209,

210, 212, 213, 219, 221, 228, 229, 231, 232
rotation_angle_step (data field), 232
rotation_speed (data field), 150, 155, 190, 195
RPM, see NAPI installation
rules, 3, 57

HDF, 17, 106
HDF5, 32
naming, 19, 25, 32, 106
NeXus, 25, 56–58
NX prefix, 19
NXDL, 56, 58
Schematron, 58
XML, 106

run (data field), 236
run_control (data field), 180
run_cycle (data field), 152, 187, 193
run_number (data field), 215, 261, 265

S
sample (base class), see NXsample, 175
sample_component (data field), 177
sample_id (data field), 194
sample_orientation (data field), 176
sampled_fraction (data field), 168
sas (application definition), see NXsas, 204
sastof (application definition), see NXsastof, 206
saturation_value (data field), 145, 256
scaling (attribute), 223
scaling_factor (data field), 140
scan (application definition), see NXscan, 208
scattering_cross_section (data field), 128

scattering_length_density (data field), 177
scattering_vector (data field), 137
Schematron, 56–58
SDD (data field), 241
SDS, see Scientific Data Sets
seblock (data field), 210
see repository

NAPI installation, 287
segment_columns (data field), 137
segment_gap (data field), 137
segment_height (data field), 137
segment_rows (data field), 137
segment_thickness (data field), 137
segment_width (data field), 137
sensor (base class), see NXsensor, 179
sensor_material (data field), 146, 256
sensor_size (data field), 234
sensor_thickness (data field), 146, 256
separator (contributed definition), see NXseparator, 259
sequence_number (data field), 144, 221
set_Bfield_current (data field), 259, 270
set_current (data field), 251, 253, 259, 269
set_Efield_voltage (data field), 259, 270
set_voltage (data field), 252, 253
sgl (data field), 213
sgu (data field), 213
ShadowFactor (data field), 239
shape (base class), see NXshape, 181
shape (data field), 181, 205, 207, 263, 264, 267, 268
short_name (attribute), 163, 183
short_name (data field), 154, 179
short_title (data field), 178
sigma_x (data field), 184
sigma_y (data field), 184
signal (attribute), 140, 141, 161, 168, 199, 226, 250
situation (data field), 177, 194
size (data field), 130, 181, 205, 207, 263, 264, 267, 268
slit (base class), see NXslit, 182
slit (data field), 155
slit_angle (data field), 150
slit_height (data field), 150
slit_length (data field), 241
slits (data field), 150
slot (data field), 143
slow_pixel_direction (data field), 149, 257
slow_pixel_size (data field), 149, 258
SNSbanking_file_name (data field), 261, 266
SNSdetector_calibration_id (data field), 262, 266
snsevent (contributed definition), see NXsnsevent, 260
SNSgeometry_file_name (data field), 262, 266
snshisto (contributed definition), see NXsnshisto, 264
SNSmapping_file_name (data field), 261, 266
SNStranslation_service (data field), 262, 266
soft_limit_max (data field), 173

308 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

soft_limit_min (data field), 173
software, 291, 292
solenoid magnet (contributed definition), see NX-

solenoid_magnet, 269
solid_angle (data field), 143
soller_angle (data field), 134
source (attribute), 133
source (base class), see NXsource, 182
source distribution, see NAPI installation
source_distance_x (data field), 131
source_distance_y (data field), 131
space_group (data field), 136
spe (application definition), see NXspe, 209
spec2nexus, 292
Sphinx (documentation generator), 297
spin rotator (contributed definition), see NXspin_rotator,

270
spwidth (data field), 190
sqom (application definition), see NXsqom, 210
start (attribute), 146, 164
start_time (data field), 146, 152, 167, 187, 192, 195, 196,

200, 201, 203, 204, 206, 209, 212, 214, 215,
217, 218, 220, 223, 226, 233, 254, 261, 265

status (data field), 129, 130, 156
stop_time (data field), 146
strategies, 54

simplest case(s), 54
stress_field (data field), 176, 194
strings, 35
subentry (base class), see NXsubentry, 185
substrate_density (data field), 165
substrate_material (data field), 157, 160, 165
substrate_roughness (data field), 158, 161, 165
substrate_thickness (data field), 158, 161, 165
support_membrane_material (data field), 253
support_membrane_thickness (data field), 253
surface (data field), 161
symmetric (data field), 191

T
T (data field), 250
table (data field), 190
taper (data field), 162
target

attribute, 43
link, 19

target_material (data field), 184
target_value (data field), 173
tas (application definition), see NXtas, 212
telephone_number (data field), 189
temperature (data field), 138, 156, 167, 176, 194, 210,

227, 234, 246, 258, 263, 268
temperature_coefficient (data field), 138
term (data field), 171, 249

thickness (data field), 128, 137, 156, 159, 178, 246
threshold_energy (data field), 146, 256
tilt_angle (data field), 231
time, see date and time
time (attribute), 129, 185
time (data field), 164, 261, 265, 266
time_of_flight (data field), 141, 154, 168, 199, 203, 204,

207, 208, 214–218, 264, 267, 269
time_per_channel (data field), 234, 254
timestamp (attribute), 250
timing (data field), 251, 253
Tischler, Jonathan, 11, 295
title (data field), 151, 185, 186, 192, 195–197, 200, 201,

203, 204, 206, 209, 211, 212, 214, 215, 217,
218, 220, 222, 223, 225, 226, 233, 236, 254,
261, 265

tofnpd (application definition), see NXtofnpd, 214
tofraw (application definition), see NXtofraw, 215
tofsingle (application definition), see NXtofsingle, 217
tolerance (data field), 173
tomo (application definition), see NXtomo, 218
tomophase (application definition), see NXtomophase,

220
tomoproc (application definition), see NXtomoproc, 221
top_up (data field), 185
total_counts (data field), 261, 262, 265, 267
total_uncounted_counts (data field), 261, 265
transform (attribute), 223
transformation matrices, 23
transformation type (attribute), 24
transformation_type (attribute), 148, 149, 257, 258, 271
transformations (contributed definition), see NXtransfor-

mations, 270
translation, 24
translation (base class), see NXtranslation, 188
transmission (data field), 246
transmitting_material (data field), 134, 156
tree structure, see hierarchy
trigger_dead_time (data field), 145
trigger_delay_time (data field), 145
tutorial

WONI, 43
twist (data field), 190
type

transformation_type (attribute), 24
type (attribute), 241
type (data field), 128, 132, 134, 135, 143, 150, 154, 155,

158, 162, 165, 166, 168, 170, 172, 176, 180,
183, 190, 193–195, 197, 200, 202, 204, 207,
211, 219, 221, 222, 224, 226, 233, 256, 262–
264, 267, 268

U
UDunits, 36

Index 309

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

uncertainties (attribute), 140
uncertainty (attribute), 238, 239, 250
Unidata UDunits, 36
unit_cell (data field), 136, 176, 199, 213, 227
unit_cell_a (data field), 136, 157
unit_cell_alpha (data field), 136, 157
unit_cell_b (data field), 136, 157
unit_cell_beta (data field), 136, 157
unit_cell_c (data field), 136, 157
unit_cell_class (data field), 177
unit_cell_gamma (data field), 136, 157
unit_cell_group (data field), 178
unit_cell_volume (data field), 136, 157, 176
units, 14, 17, 18, 36, 107

attribute, 4
units (attribute), 142, 171
URL (attribute), 133, 152, 187
usage (data field), 135
user (base class), see NXuser, 188
utilities, 291

V
validation, 55, 57, 291

NeXus data files, 57
NXDL rules, 58
NXDL specifications, 57
XSLT files, 58

value (attribute), 24, 51
value (data field), 164, 170, 173, 180, 252–254, 259–261,

263–270
value_deriv1 (data field), 180
value_deriv2 (data field), 180
variable (data field), 139, 198
variable_errors (data field), 139
varied_variable (attribute), 198
vector (attribute), 24, 148, 149, 257, 258, 271
velocity (data field), 173
velocity selector (base class), see NXvelocity_selector,

189
verification, 55
version (attribute), 133, 152, 186, 187, 193, 210, 235
version (data field), 173, 198, 211, 222, 225, 262, 266
voltage (data field), 184
volume_fraction (data field), 177

W
wavelength (data field), 137, 146, 156, 161, 169, 190, 196,

200, 202, 205, 226, 230, 245, 264, 268
wavelength_error (data field), 169
wavelength_max (data field), 245
wavelength_min (data field), 245
wavelength_range (data field), 151
wavelength_spread (data field), 190, 205, 245
why NeXus?, see motivation, 10

width (data field), 155, 190
wiki, 283
Windows, see NAPI installation
WONI, 43
working_distance (data field), 132
write file, 13

X
x (data field), 130, 140, 223, 241, 243, 244, 246
x_gap (data field), 182
x_pixel_offset (data field), 142, 263, 267, 268
x_pixel_size (data field), 143, 199, 203, 205, 207, 219,

221, 226
x_rotation_axis_pixel_position (data field), 219
x_translation (data field), 178, 219, 221, 227
xas (application definition), see NXxas, 223
xasproc (application definition), see NXxasproc, 224
xbase (application definition), see NXxbase, 225
xeuler (application definition), see NXxeuler, 227
xkappa (application definition), see NXxkappa, 228
xlaue (application definition), see NXxlaue, 229
xlaueplate (application definition), see NXxlaueplate, 230
XML, 12, 57, 296

file format, 42, 287
XML Schema (XSD), 57, 58
XML_version (attribute), 174
xnb (application definition), see NXxnb, 230
xraylens (base class), see NXxraylens, 190
xrot (application definition), see NXxrot, 231
XSD, 57
XSLT, 57, 58

Y
y (data field), 130, 140, 223, 241, 243, 244, 246
y_gap (data field), 182
y_pixel_offset (data field), 142, 263, 267
y_pixel_size (data field), 143, 199, 203, 205, 207, 219,

221, 226
y_rotation_axis_pixel_position (data field), 219
y_translation (data field), 219, 221, 227
yaw (data field), 243

Z
z (data field), 140, 223, 241, 243, 244, 246
z_translation (data field), 219, 221
zone_height (data field), 252
zone_material (data field), 252
zone_support_material (data field), 252

310 Index

	NeXus: User Manual
	NeXus Introduction
	NeXus Design
	Constructing NeXus Files and Application Definitions
	Strategies for storing information in NeXus data files
	Verification and validation of files
	Frequently Asked Questions

	Examples of writing and reading NeXus data files
	Code Examples that use the NAPI
	Code Examples that do not use the NAPI

	NeXus: Reference Documentation
	Introduction to NeXus definitions
	NXDL: The NeXus Definition Language
	Base Class Definitions
	Application Definitions
	Contributed Definitions

	NAPI: NeXus Application Programmer Interface (frozen)
	Status
	Overview
	Core API
	Utility API
	Building Programs
	Reporting Bugs in the NeXus API

	NeXus Community
	NeXus Wiki
	Contributed Definitions
	Other Ways NeXus Coordinates with the Scientific Community

	Installation
	Precompiled Binary Installation
	Source Installation

	NeXus Utilities
	Utilities supplied with NeXus
	Data Analysis
	HDF Tools

	Brief history of NeXus
	About these docs
	Authors
	Colophon
	Revision History
	Copyright and Licenses

	Index

